ABSTRACT: This paper explores the use of cyber-physical systems (CPS) for optimal design in wind engineering. The approach combines the accuracy of physical wind tunnel testing with the ability to efficiently explore a solution space using numerical optimization algorithms. The approach is fully automated, with experiments executed in a boundary layer wind tunnel (BLWT), sensor feedback monitored by a high-performance computer, and actuators used to bring about physical changes in the BLWT. Because the model is undergoing physical change as it approaches the optimal solution, this approach is given the name “loop-in-the-model” testing. The building selected for this study is a low-rise structure with a parapet wall of variable height. Parapet walls alter the location of the roof corner vortices, alleviating large suction loads on the windward facing roof corner and edges and setting up an interesting optimal design problem. In the BLWT, the model parapet height is adjusted using servo-motors to achieve a particular design. The model surface is instrumented with pressure taps to measure the envelope pressure loading. The taps are densely spaced on the roof to provide sufficient resolution to capture the change in roof corner vortex formation. Experiments are conducted using a boundary BLWT located at the University of Florida Natural Hazard Engineering Research Infrastructure (NHERI) Experimental Facility. The proposed CPS approach enables the optimal solution to be found quicker than brute force methods, in particular for complex structures with many design variables. The parapet wall provides a proof-of-concept study with a single design variable that has a non-monotonic influence on a structure’s wind load. This study focuses on envelope load effects, seeking the parapet height that minimizes roof and parapet wall suction loading. Implications are significant for more complex structures where the optimal solution may not be obvious and cannot be reasonably determined with traditional experimental or computational methods. KEYWORDS: Cyber-physical systems, optimization, boundary-layer wind tunnel, parapet wall, NHERI
more »
« less
Flow characteristics over flat building roof with different edge configurations for wind energy harvesting: A wind tunnel study
The impact of climate change and global warming makes it imperative to seek sustainable solutions for the built environment. To facilitate the design of future sustainable buildings, wind tunnel tests are conducted in this study to investigate the flow characteristics and wind energy potential over a flat building roof with different edge configurations. Specifically, this study addresses the effect of parapet walls and roof edge-mounted solar panels on the wind flow over a flat-roof tall building. The results show that parapet walls generally slow down the wind speed and increase turbulence intensity as well as skewness angle, which compromises the efficiency of traditional turbine-based wind energy harvesting. On the other hand, the presence of solar panels on the roof edge (or on the top of the parapet wall) further alters flow separation and has the potential to enhance wind energy harvesting over the roof, especially for the solar panel inclined at 30°. In addition to providing valuable data for validating computational fluid dynamics (CFD) simulations, this study could also help to guide the design of wind energy harvesting devices on the building roof and explore the promising synergy with solar panels.
more »
« less
- PAR ID:
- 10586113
- Publisher / Repository:
- ScienceDirect
- Date Published:
- Journal Name:
- Energy and Buildings
- Volume:
- 323
- Issue:
- C
- ISSN:
- 0378-7788
- Page Range / eLocation ID:
- 114789
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Optimal design in wind engineering using cyber-physical systems and non-stochastic search algorithmsThis paper explores a cyber-physical systems (CPS) approach to optimize the design of rigid, low-rise structures subjected to wind loading. The approach combines the accuracy of physical wind tunnel testing with the ability to efficiently explore a solution space using numerical optimization algorithms. The approach is fully automated, with experiments executed in a boundary layer wind tunnel (BLWT), sensor feedback monitored by a computer, and actuators used to generate physical changes to a mechatronic structural model. The approach was demonstrated for a low-rise structure with a parapet wall of variable height. A non-stochastic optimization algorithm was implemented to search along the domain of parapet heights to minimize both positive and negative pressures on the roof a of a 1:18 length scale low-rise building model. Experiments were conducted at the University of Florida Experimental Facility (UFEF) of the National Science Foundation’s (NSF) Natural Hazard Engineering Research Infrastructure (NHERI) program.more » « less
-
The complex dynamics of vertically separated flows pose a significant challenge when it comes to assessing the wind loads on multi-level structures, demanding a nuanced understanding of the intricate interplay between atmospheric conditions and architectural designs. Previous studies and wind loading standards provide insufficient guidance for designing wind pressures on multi-level buildings. The behavior of wind around perpendicularly attached surfaces is not quite similar to that of individual flat roofs or walls. When a body is composed of several surfaces with right or oblique angles, the separated flow from surfaces and their interactions will cause complex flow patterns around each surface. A wind tunnel experimental study was carried out on bluff bodies with attached flat plates and other adjacent bluff bodies with different heights to examine the wind-induced pressures on such complex shapes. Mean and peak pressure coefficients were measured to determine the flow interaction patterns and location of localized peak pressures. The results were compared to the Tokyo Polytechnic University Aerodynamic Database of isolated low-rise buildings without eaves. The research findings indicated that there was a noteworthy disparity between the minimum and maximum values and locations of peak pressures on both the wall and roof surfaces of the models used in this study, as compared to the results obtained by the Tokyo Polytechnic University. Moreover, the study conceivably pointed to the difference between the peak negative and positive pressure coefficient locations with the ASCE 7-22 wind loading zones. The peak suction zones were affected by the combined flows at perpendicular faces, and as a result, different wind load zones were obtained dissimilar to those introduced by ASCE 7-22. Wind loading standards may need to be modified to account for the wind pressures on complex building structures with an emphasis on the location of the peak negative pressure zones.more » « less
An official website of the United States government

