Thermoregulatory performance can be modified through changes in various subordinate traits, but the rate and magnitude of change in these traits is poorly understood. We investigated flexibility in traits that affect thermal balance between black-capped chickadees (Poecile atricapillus) acclimated for 6 weeks to cold (−5°C) or control (23°C) environments (n=7 per treatment). We made repeated measurements of basal and summit metabolic rates via flow-through respirometry and of body composition using quantitative magnetic resonance of live birds. At the end of the acclimation period, we measured thermal conductance of the combined feathers and skins. Cold-acclimated birds had a higher summit metabolic rate, reflecting a greater capacity for endogenous heat generation, and an increased lean mass. However, birds did not alter their thermal conductance. These results suggest that chickadees respond to cold stress by increasing their capacity for heat production rather than increasing heat retention, an energetically expensive strategy.
more »
« less
This content will become publicly available on April 10, 2026
Arduino allows development of a low-cost, high-resolution metabolic and behavioral phenotyping system for birds
Technological advancements now enable the use of flow-through respirometry for rapid, high-throughput metabolic phenotyping, though live-in systems currently do not exist for birds. We designed live-in respirometry chambers for small birds with an Arduino-based electronic system to continuously monitor bird body weight, food intake, and water intake in sync with metabolic data collection. To demonstrate how this system can be implemented, we kept birds in the metabolic phenotypic chambers for 10 days while we progressively lowered the temperature from 25 °C to 5 °C. We used the data to calculate hourly energy expenditure and food/water intake during acute cold acclimation. We provide all plans and code for the live-in chambers, Arduino biomonitoring system, and additional RFID module as a low-cost, DIY alternative to commercially available systems and to enable the use of standard respirometry equipment for metabolic phenotyping in birds.
more »
« less
- Award ID(s):
- 1941475
- PAR ID:
- 10586125
- Publisher / Repository:
- Journal of Experimental Biology
- Date Published:
- Journal Name:
- Journal of Experimental Biology
- ISSN:
- 0022-0949
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Procedures to obtain skin secretions in frogs may induce stress from handling or injection with stress-associated hormones (norepinephrine). We investigated the metabolic costs of procedures used to assess amphibian antimicrobial capacity and skin microbiome. We randomly assigned 48 adult coqui frogs (Eleutherodactylus coqui) to four treatments: microbiome depletion, antimicrobial peptide (AMP) depletion, microbiome and AMP depletion, and an unmanipulated control group. Microbiome depletion was achieved by soaking frogs in an antibiotic cocktail bath, whereas the AMP depletion was done by injection of norepinephrine followed by a buffer bath. We used a flow-through Sable Systems Field Metabolic System to collect respirometry data following a 30-minute acclimation period to respirometry chambers. Respirometry data were collected at three timepoints: (1) Baseline at 2-3 weeks prior to treatment; (2) Post-treatment representing 2 days after AMP depletion and 4 days after microbiome depletion; and (3) Final data at 6 weeks post-treatment. Then, to assess the effects of norepinephrine injection at a shorter timescale, a subset of 24 frogs that had not previously experienced AMP depletion were assigned to either AMP depletion or a buffer bath-only control group. Respirometry data collection began without acclimation to respirometry chambers, immediately after removing frogs from buffer baths. Over the 6-week period, we found no consistent treatment effects on metabolism in coqui frogs. At the shorter timescale, metabolism increased with time-since-handling and after norepinephrine injection. Our results show that standard procedures predicted to increase stress at the individual level do not have a lasting effect on whole-frog metabolism.more » « less
-
Understanding physiological traits and ecological conditions that influence a species reliance on metabolic water is critical to creating accurate physiological models that can assess their ability to adapt to environmental perturbations (e.g., drought) that impact water availability. However, relatively few studies have examined variation in the sources of water animals use to maintain water balance, and even fewer have focused on the role of metabolic water. A key reason is methodological limitations. Here, we applied a new method that measures the triple oxygen isotopic composition of a single blood sample to estimate the contribution of metabolic water to the body water pool of three passerine species. This approach relies on Δ' 17 O, defined as the residual from the tight linear correlation that naturally exists between δ 17 O and δ 18 O values. Importantly, Δ'17O is relatively insensitive to key fractionation processes, such as Rayleigh distillation in the water cycle that have hindered previous isotope-based assessments of animal water balance. We evaluated the effects of changes in metabolic rate and water intake on Δ' 17 O values of captive rufous-collared sparrows ( Zonotrichia capensis ) and two invertivorous passerine species in the genus Cinclodes from the field. As predicted, colder acclimation temperatures induced increases in metabolic rate, decreases in water intake, and increases in the contribution of metabolic water to the body water pool of Z. capensis , causing a consistent change in Δ' 17 O. Measurement of Δ' 17 O also provides an estimate of the δ 18 O composition of ingested pre-formed (drinking/food) water. Estimated δ 18 O values of drinking/food water for captive Z. capensis were ~ −11‰, which is consistent with that of tap water in Santiago, Chile. In contrast, δ 18 O values of drinking/food water ingested by wild-caught Cinclodes were similar to that of seawater, which is consistent with their reliance on marine resources. Our results confirm the utility of this method for quantifying the relative contribution of metabolic versus pre-formed drinking/food water to the body water pool in birds.more » « less
-
null (Ed.)Most people in the world live in urban areas, and their high population densities, heavy reliance on external sources of food, energy, and water, and disproportionately large waste production result in severe and cumulative negative environmental effects. Integrated study of urban areas requires a system-of-systems analytical framework that includes modeling with social and biophysical data. We describe preliminary work toward an integrated urban food-energy-water systems (FEWS) analysis using co-simulation for assessment of current and future conditions, with an emphasis on local (urban and urban-adjacent) food production. We create a framework to enable simultaneous analyses of climate dynamics, changes in land cover, built forms, energy use, and environmental outcomes associated with a set of drivers of system change related to policy, crop management, technology, social interaction, and market forces affecting food production. The ultimate goal of our research program is to enhance understanding of the urban FEWS nexus so as to improve system function and management, increase resilience, and enhance sustainability. Our approach involves data-driven co-simulation to enable coupling of disparate food, energy and water simulation models across a range of spatial and temporal scales. When complete, these models will quantify energy use and water quality outcomes for current systems, and determine if undesirable environmental effects are decreased and local food supply is increased with different configurations of socioeconomic and biophysical factors in urban and urban-adjacent areas. The effort emphasizes use of open-source simulation models and expert knowledge to guide modeling for individual and combined systems in the urban FEWS nexus.more » « less
-
Abstract Noninvasive phenotyping can quantify dynamic plant growth processes at higher temporal resolution than destructive phenotyping and can reveal phenomena that would be missed by end‐point analysis alone. Additionally, whole‐plant phenotyping can identify growth conditions that are optimal for both above‐ and below‐ground tissues. However, noninvasive, whole‐plant phenotyping approaches available today are generally expensive, complex, and non‐modular. We developed a low‐cost and versatile approach to noninvasively measure whole‐plant physiology over time by growing plants in isolated hydroponic chambers. We demonstrate the versatility of our approach by measuring whole‐plant biomass accumulation, water use, and water use efficiency every two days on unstressed and osmotically stressed sorghum accessions. We identified relationships between root zone acidification and photosynthesis on whole‐plant water use efficiency over time. Our system can be implemented using cheap, basic components, requires no specific technical expertise, and should be suitable for any non‐aquatic vascular plant species.more » « less
An official website of the United States government
