skip to main content


Title: Triple Oxygen Isotope Measurements (Δ'17O) of Body Water Reflect Water Intake, Metabolism, and δ18O of Ingested Water in Passerines
Understanding physiological traits and ecological conditions that influence a species reliance on metabolic water is critical to creating accurate physiological models that can assess their ability to adapt to environmental perturbations (e.g., drought) that impact water availability. However, relatively few studies have examined variation in the sources of water animals use to maintain water balance, and even fewer have focused on the role of metabolic water. A key reason is methodological limitations. Here, we applied a new method that measures the triple oxygen isotopic composition of a single blood sample to estimate the contribution of metabolic water to the body water pool of three passerine species. This approach relies on Δ' 17 O, defined as the residual from the tight linear correlation that naturally exists between δ 17 O and δ 18 O values. Importantly, Δ'17O is relatively insensitive to key fractionation processes, such as Rayleigh distillation in the water cycle that have hindered previous isotope-based assessments of animal water balance. We evaluated the effects of changes in metabolic rate and water intake on Δ' 17 O values of captive rufous-collared sparrows ( Zonotrichia capensis ) and two invertivorous passerine species in the genus Cinclodes from the field. As predicted, colder acclimation temperatures induced increases in metabolic rate, decreases in water intake, and increases in the contribution of metabolic water to the body water pool of Z. capensis , causing a consistent change in Δ' 17 O. Measurement of Δ' 17 O also provides an estimate of the δ 18 O composition of ingested pre-formed (drinking/food) water. Estimated δ 18 O values of drinking/food water for captive Z. capensis were ~ −11‰, which is consistent with that of tap water in Santiago, Chile. In contrast, δ 18 O values of drinking/food water ingested by wild-caught Cinclodes were similar to that of seawater, which is consistent with their reliance on marine resources. Our results confirm the utility of this method for quantifying the relative contribution of metabolic versus pre-formed drinking/food water to the body water pool in birds.  more » « less
Award ID(s):
1941903
NSF-PAR ID:
10310780
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Physiology
Volume:
12
ISSN:
1664-042X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The fundamental tradeoff between carbon gain and water loss has long been predicted as an evolutionary driver of plant strategies across environments. Nonetheless, challenges in measuring carbon gain and water loss in ways that integrate over leaf lifetime have limited our understanding of the variation in and mechanistic bases of this tradeoff. Furthermore, the microevolution of plant traits within species versus the macroevolution of strategies among closely related species may not be the same, and accordingly, the latter must be addressed using comparative phylogenetic analyses.

    Here we introduce the concept of ‘integrated metabolic strategy’ (IMS) to describe the ratio between carbon isotope composition (δ13C) and oxygen isotope composition above source water (Δ18O) of leaf cellulose. IMS is a measure of leaf‐level conditions that integrate several mechanisms contributing to carbon gain (δ13C) and water loss (Δ18O) over leaf lifespan, with larger values reflecting higher metabolic efficiency and hence less of a tradeoff. We tested how IMS evolves among closely related yet ecologically diverse milkweed species, and subsequently addressed phenotypic plasticity in response to water availability in species with divergent IMS.

    Integrated metabolic strategy varied strongly among 20Asclepiasspecies when grown under controlled conditions, and phylogenetic analyses demonstrate species‐specific tradeoffs between carbon gain and water loss. Larger IMS values were associated with species from dry habitats, with larger carboxylation capacity, smaller stomatal conductance and smaller leaves; smaller IMS was associated with wet habitats, smaller carboxylation capacity, larger stomatal conductance and larger leaves. The evolution of IMS was dominated by changes in species’ demand for carbon (δ13C) more so than water conservation (Δ18O). Although some individual physiological traits showed phylogenetic signal, IMS did not.

    In response to experimental decreases in soil moisture, three species maintained similar IMS across levels of water availability because of proportional increases inδ13C and Δ18O (or little change in either), while one species increased IMS due to disproportional changes inδ13C relative to Δ18O.

    Synthesis.IMS is a broadly applicable mechanistic tool; IMS variation among and within species may shed light on unresolved questions relating to the evolution and ecology of plant ecophysiological strategies.

     
    more » « less
  2. Abstract

    A controversial aspect of Pliocene (5.3–2.6 Ma) climate is whether El Niño‐like (El Padre) conditions, characterized by a reduced trans‐equatorial sea‐surface temperature (SST) gradient, prevailed across the Pacific. Evidence for El Padre is chiefly based on reconstructions of sea‐surface conditions derived from the oxygen isotope (δ18O) and Mg/Ca compositions of shells belonging to the planktic foraminiferTrilobatus sacculifer. However, fossil shells of this species are a mixture of multiple carbonate phases—pre‐gametogenic, gametogenic (reproductive), and diagenetic calcites—that formed under different physiological and/or environmental conditions and are averaged in conventional whole‐shell analyses. Through in situ measurements of micrometer‐scale domains within Pliocene‐aged shells ofT. sacculiferfrom Ocean Drilling Program Site 806 in the western equatorial Pacific, we show that the δ18O of gametogenic calcite is 0.6–0.8‰ higher than pre‐gametogenic calcite, while the Mg/Ca ratios of these two phases are the same. Both the whole‐shell and pre‐gametogenic Mg/Ca records indicate that average early Pliocene SSTs were ~1°C warmer than modern, with present‐day SSTs being established during the latest Pliocene and early Pleistocene (~3.0–2.0 Ma). The measurement of multiple calcite phases by whole‐shell δ18O analyses masks a late Pliocene to earliest Pleistocene (3.6–2.2 Ma) decrease in seawater δ18O (δ18Osw) values reconstructed from in situ pre‐gametogenic δ18O and Mg/Ca measurements. Our novel δ18Oswrecord indicates that sea‐surface salinities in the west Pacific warm pool were higher than modern prior to ~3.5 Ma, which is consistent with more arid conditions under an El Padre state.

     
    more » « less
  3. Variability in resource availability is hypothesized to be a significant driver of primate adaptation and evolution, but most paleoclimate proxies cannot recover environmental seasonality on the scale of an individual lifespan. Oxygen isotope compositions (δ 18 O values) sampled at high spatial resolution in the dentitions of modern African primates ( n = 2,352 near weekly measurements from 26 teeth) track concurrent seasonal precipitation, regional climatic patterns, discrete meteorological events, and niche partitioning. We leverage these data to contextualize the first δ 18 O values of two 17 Ma Afropithecus turkanensis individuals from Kalodirr, Kenya, from which we infer variably bimodal wet seasons, supported by rainfall reconstructions in a global Earth system model. Afropithecus ’ δ 18 O fluctuations are intermediate in magnitude between those measured at high resolution in baboons ( Papio spp.) living across a gradient of aridity and modern forest-dwelling chimpanzees ( Pan troglodytes verus ). This large-bodied Miocene ape consumed seasonally variable food and water sources enriched in 18 O compared to contemporaneous terrestrial fauna ( n = 66 fossil specimens). Reliance on fallback foods during documented dry seasons potentially contributed to novel dental features long considered adaptations to hard-object feeding. Developmentally informed microsampling recovers greater ecological complexity than conventional isotope sampling; the two Miocene apes ( n = 248 near weekly measurements) evince as great a range of seasonal δ 18 O variation as more time-averaged bulk measurements from 101 eastern African Plio-Pleistocene hominins and 42 papionins spanning 4 million y. These results reveal unprecedented environmental histories in primate teeth and suggest a framework for evaluating climate change and primate paleoecology throughout the Cenozoic. 
    more » « less
  4. Abstract

    Drought‐induced groundwater decline and warming associated with climate change are primary threats to dryland riparian woodlands. We used the extreme 2012–2019 drought in southern California as a natural experiment to assess how differences in water‐use strategies and groundwater dependence may influence the drought susceptibility of dryland riparian tree species with overlapping distributions. We analyzed tree‐ring stable carbon and oxygen isotopes collected from two cottonwood species (Populus trichocarpaandP.fremontii) along the semi‐arid Santa Clara River. We also modeled tree source water δ18O composition to compare with observed source water δ18O within the floodplain to infer patterns of groundwater reliance. Our results suggest that both species functioned as facultative phreatophytes that used shallow soil moisture when available but ultimately relied on groundwater to maintain physiological function during drought. We also observed apparent species differences in water‐use strategies and groundwater dependence related to their regional distributions.P.fremontiiwas constrained to more arid river segments and ostensibly used a greater proportion of groundwater to satisfy higher evaporative demand.P.fremontiimaintained ∆13C at pre‐drought levels up until the peak of the drought, when trees experienced a precipitous decline in ∆13C. This response pattern suggests that trees prioritized maintaining photosynthetic processes over hydraulic safety, until a critical point. In contrast,P.trichocarpashowed a more gradual and sustained reduction in ∆13C, indicating that drought conditions induced stomatal closure and higher water use efficiency. This strategy may confer drought avoidance forP.trichocarpawhile increasing its susceptibility to anticipated climate warming.

     
    more » « less
  5. Abstract

    We identified 66 chromite grains from 42 of ~5000 micrometeorites collected from Indian Ocean deep‐sea sediments and the South Pole water well. To determine the chromite grains precursors and their contribution to the micrometeorite flux, we combined quantitative electron microprobe analyses and oxygen isotopic analyses by high‐resolution secondary ion mass spectrometry. Micrometeorite chromite grains show variable O isotopic compositions with δ18O values ranging from −0.8 to 6.0‰, δ17O values from 0.3 to 3.6‰, and Δ17O values from −0.9 to 1.6‰, most of them being similar to those of chromites from ordinary chondrites. The oxygen isotopic compositions of olivine, considered as a proxy of chromite in chromite‐bearing micrometeorites where chromite is too small to be measured in ion microprobe have Δ17O values suggesting a principal relationship to ordinary chondrites with some having carbonaceous chondrite precursors. Furthermore, the chemical compositions of chromites in micrometeorites are close to those reported for ordinary chondrite chromites, but some contribution from carbonaceous chondrites cannot be ruled out. Consequently, carbonaceous chondrites cannot be a major contributor of chromite‐bearing micrometeorites. Based on their oxygen isotopic and elemental compositions, we thus conclude with no ambiguity that chromite‐bearing micrometeorites are largely related to fragments of ordinary chondrites with a small fraction from carbonaceous chondrites, unlike other micrometeorites deriving largely from carbonaceous chondrites.

     
    more » « less