skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Mechanical imbalance between normal and transformed cells drives epithelial homeostasis through cell competition
Cell competition in epithelial tissue eliminates transformed cells expressing activated oncoproteins to maintain epithelial homeostasis. Although the process is now understood to be of mechanochemical origin, direct mechanical characterization and associated biochemical underpinnings are lacking. Here, we employ tissue-scale stress and compressibility measurements and theoretical modeling to unveil a mechanical imbalance between normal and transformed cells, which drives cell competition. In the mouse intestinal epithelium and epithelial monolayer, transformed cells get compacted during competition. Stress microscopy reveals an emergent compressive stress at the transformed loci leading to this compaction. A cell-based self-propelled Voronoi model predicts that this compressive stress originates from a difference in the collective compressibility of the competing populations. A new collective compressibility measurement technique named gel compression microscopy then elucidates a two-fold higher compressibility of the transformed population than the normal population. Mechanistically, weakened cell-cell adhesions due to reduced junctional abundance of E-cadherin in the transformed cells render them collectively more compressible than normal cells. Taken together, our findings unveil a mechanical basis for epithelial homeostasis against oncogenic transformations with implications in epithelial defense against cancer.  more » « less
Award ID(s):
2046683 2019745
PAR ID:
10586150
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
eLife Sciences Publications
Date Published:
Format(s):
Medium: X
Institution:
eLife
Sponsoring Org:
National Science Foundation
More Like this
  1. Cellular unjamming is the collective fluidization of cell motion and has been linked to many biological processes, including development, wound repair, and tumor growth. In tumor growth, the uncontrolled proliferation of cancer cells in a confined space generates mechanical compressive stress. However, because multiple cellular and molecular mechanisms may be operating simultaneously, the role of compressive stress in unjamming transitions during cancer progression remains unknown. Here, we investigate which mechanism dominates in a dense, mechanically stressed monolayer. We find that long-term mechanical compression triggers cell arrest in benign epithelial cells and enhances cancer cell migration in transitions correlated with cell shape, leading us to examine the contributions of cell–cell adhesion and substrate traction in unjamming transitions. We show that cadherin-mediated cell–cell adhesion regulates differential cellular responses to compressive stress and is an important driver of unjamming in stressed monolayers. Importantly, compressive stress does not induce the epithelial–mesenchymal transition in unjammed cells. Furthermore, traction force microscopy reveals the attenuation of traction stresses in compressed cells within the bulk monolayer regardless of cell type and motility. As traction within the bulk monolayer decreases with compressive pressure, cancer cells at the leading edge of the cell layer exhibit sustained traction under compression. Together, strengthened intercellular adhesion and attenuation of traction forces within the bulk cell sheet under compression lead to fluidization of the cell layer and may impact collective cell motion in tumor development and breast cancer progression. 
    more » « less
  2. null (Ed.)
    How cells with different genetic makeups compete in tissues is an outstanding question in developmental biology and cancer research. Studies in recent years have revealed that cell competition can either be driven by short-range biochemical signalling or by long-range mechanical stresses in the tissue. To date, cell competition has generally been characterised at the population scale, leaving the single-cell-level mechanisms of competition elusive. Here, we use high time-resolution experimental data to construct a multi-scale agent-based model for epithelial cell competition and use it to gain a conceptual understanding of the cellular factors that governs competition in cell populations within tissues. We find that a key determinant of mechanical competition is the difference in homeostatic density between winners and losers, while differences in growth rates and tissue organisation do not affect competition end result. In contrast, the outcome and kinetics of biochemical competition is strongly influenced by local tissue organisation. Indeed, when loser cells are homogenously mixed with winners at the onset of competition, they are eradicated; however, when they are spatially separated, winner and loser cells coexist for long times. These findings suggest distinct biophysical origins for mechanical and biochemical modes of cell competition. 
    more » « less
  3. The elastic moduli of tissues are connected to their states of health and function. The epithelial monolayer is a simple, minimal, tissue model that is often used to gain understanding of mechanical behavior at the cellular or multi-cellular scale. Here we investigate how the elastic modulus of Madin Darby Canine Kidney (MDCK) cells depends on their packing density. Rather than measuring elasticity at the sub-cellular scale with local probes, we characterize the monolayer at the multicellular scale, as one would a thin slab of elastic material. We use a micro-indentation system to apply gentle forces to the apical side of MDCK monolayers, applying a normal force to approximately 100 cells in each experiment. In low-density confluent monolayers, we find that the elastic modulus decreases with increasing cell density. At high densities, the modulus appears to plateau. This finding will help guide our understanding of known collective behaviors in epithelial monolayers and other tissues where variations in cell packing density are correlated with cell motion. 
    more » « less
  4. Abstract Collective migration of epithelial cells drives diverse tissue remodeling processes. In many cases, a free tissue edge polarizes the cells to promote directed motion, but how edge-free or closed epithelia initiate migration remains unclear. Here, we show that the rotational migration of follicular epithelial cells in theDrosophilaegg chamber is a self-organizing process. Combining experiments and theoretical modeling, we identify a positive feedback loop in which the mechanosensitive behavior of the atypical cadherin Fat2 synergizes with the rigid-body dynamics of the egg chamber to both initiate and sustain rotation. Mechanical constraints arising from cell–cell interactions and tissue geometry further align this motion around the egg chamber’s anterior–posterior axis. Our findings reveal a biophysical mechanism — combining Fat2-mediated velocity–polarity alignment, rigid-body dynamics, and tissue geometry — by which a closed epithelial tissue self-organizes into persistent, large-scale rotational migrationin vivo, expanding current flocking theories. 
    more » « less
  5. Tensional homeostasis is a phenomenon of fundamental importance in mechanobiology. It refers to the ability of organs, tissues, and cells to respond to external disturbances by maintaining a homeostatic (set point) level of mechanical stress (tension). It is well documented that breakdown in tensional homeostasis is the hallmark of progression of diseases, including cancer and atherosclerosis. In this review, we surveyed quantitative studies of tensional homeostasis with the goal of providing characterization of this phenomenon across a broad range of length scales, from the organ level to the subcellular level. We considered both static and dynamics approaches that have been used in studies of this phenomenon. Results that we found in the literature and that we obtained from our own investigations suggest that tensional homeostasis is an emergent phenomenon driven by collective rheostatic mechanisms associated with focal adhesions, and by a collective action of cells in multicellular forms, whose impact on tensional homeostasis is cell type-dependent and cell microenvironment-dependent. Additionally, the finding that cadherins, adhesion molecules that are important for formation of cell–cell junctions, promote tensional homeostasis even in single cells, demonstrates their relevance as a signaling moiety. 
    more » « less