Geotechnical characterization of marine sediments remains an outstanding challenge for offshore energy development, including foundation design and site selection of wind turbines and offshore platforms. We demonstrate that passive distributed acoustic sensing (DAS) surveys offer a new solution for shallow offshore geotechnical investigation where seafloor power or communications cables with fiber-optic links are available. We analyze Scholte waves recorded by DAS on a 42 km power cable in the Belgian offshore area of the southern North Sea. Ambient noise crosscorrelations converge acceptably with just over one hour of data, permitting multimodal Scholte wave dispersion measurement and shear-wave velocity inversion along the cable. We identify anomalous off-axis Scholte wave arrivals in noise crosscorrelations at high frequencies. Using a simple passive source imaging approach, we associate these arrivals with individual wind turbines, which suggests they are generated by structural vibrations. While many technological barriers must be overcome before ocean-bottom DAS can be applied to global seismic monitoring in the deep oceans, high-frequency passive surveys for high-resolution geotechnical characterization and monitoring in coastal regions are easily achievable today.
more »
« less
This content will become publicly available on February 28, 2026
Distributed Acoustic Sensing for Whale Vocalization Monitoring: A Vertical Deployment Field Test
Abstract There is growing interest in floating offshore wind turbine (FOWT) technology, where turbines are installed on floating structures anchored to the seabed, allowing wind energy development in areas unsuitable for traditional fixed-platform turbines. Responsible development requires monitoring the impact of FOWTs on marine wildlife, such as whales, throughout the operational lifecycle of the turbines. Distributed acoustic sensing (DAS)—a technology that transforms fiber-optic cables into vibration sensor arrays—has been demonstrated for acoustic monitoring of whales using seafloor telecommunications cables. However, no studies have yet evaluated DAS performance in dynamic, engineered environments, such as floating platforms or moving vessels with complex, dynamic strain loads, despite their relevance to FOWT settings. This study addresses that gap by deploying DAS aboard a boat in Monterey Bay, California, where a fiber-optic cable was lowered using a weighted and suspended mooring line, enabling vertical deployment. Humpback whale vocalizations were captured and identified in the DAS data, noise sources were identified, and DAS data were compared to audio captured by a standalone hydrophone attached to the mooring line and a nearby hydrophone on a cabled observatory. This study is unique in: (1) deploying DAS in a vertical deployment mode, where noise from turbulence, cable vibrations, and other sources posed additional challenges compared to seafloor DAS applications; (2) demonstrating DAS in a dynamic, nonstationary setup, which is uncommon for DAS interrogators typically used in more stable environments; and (3) leveraging looped sections of the cable to reduce the noise floor and mitigate the effects of excessive cable vibrations and strain. This research demonstrates DAS’s ability to capture whale vocalizations in challenging environments, highlighting its potential to enhance underwater acoustic monitoring, particularly in the context of renewable energy development in offshore environments.
more »
« less
- Award ID(s):
- 2103137
- PAR ID:
- 10586190
- Publisher / Repository:
- GeoScienceWorld
- Date Published:
- Journal Name:
- Seismological Research Letters
- Volume:
- 96
- Issue:
- 2A
- ISSN:
- 0895-0695
- Page Range / eLocation ID:
- 801 to 815
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Distributed acoustic sensing (DAS) on submarine fiber-optic cables is providing new observational insights into solid Earth processes and ocean dynamics. However, the availability of offshore dark fibers for long-term deployment remains limited. Simultaneous telecommunication and DAS operating at different wavelengths in the same fiber, termed optical multiplexing, offers one solution. In May 2024, we collected a four-day DAS dataset utilizing an L-band DAS interrogator and multiplexing on the submarine cables of the Ocean Observatory Initiative’s Regional Cabled Array offshore central Oregon. Our findings show that multiplexed DAS has no impact on communications and is unaffected by network traffic. Moreover, the quality of DAS data collected via multiplexing matches that of data obtained from dark fiber. With a machine-learning event detection workflow, we detect 31 T waves and the S wave of one regional earthquake, demonstrating the feasibility of continuous earthquake monitoring using the multiplexed offshore DAS. We also examine ocean waves and ocean-generated seismic noise. We note high-frequency seismic noise modulated by low-frequency ocean swell and hypothesize about its origins. The complete dataset is freely available.more » « less
-
Distributed acoustic sensing (DAS) is a technique that measures strain changes along an optical fiber to distances of ∼100 km with a spatial sensitivity of tens of meters. In November 2021, 4 days of DAS data were collected on two cables of the Ocean Observatories Initiative Regional Cabled Array extending offshore central Oregon. Numerous 20 Hz fin whale calls, northeast Pacific blue whale A and B calls, and ship noises were recorded, highlighting the potential of DAS for monitoring the ocean. The data are publicly available to support studies to understand the sensitivity of submarine DAS for low-frequency acoustic monitoring.more » « less
-
Abstract Distributed acoustic sensing (DAS) is being explored in a variety of environments as a promising technology for the recording of seismic signals in dense array configurations. There is a particular interest for deploying DAS arrays on the ocean floor, presenting formidable challenges for conventional seismology. Taking advantage of the availability of a dark fiber on the Monterey Bay Accelerated Research System (MARS) 52 km offshore cable at Monterey Bay, California, in July 2022, we installed a DAS interrogator at the shore end of the cable with the intention of acquiring continuous data for a period of one year. Here, we describe the experiment and present examples of observations over the first six months of the deployment.more » « less
-
Seafloor moorings measuring pressure and temperature were deployed from April to September 2023 at three sites near the route of the fiber optic telecommunications cable that extends offshore of Oliktok Point, Alaska. The raw data data (1 Hertz (Hz) sampling) are processed for hourly estimates of the ocean surface wave conditions, along with average seawater temperature and average depth. The sites were ice-covered from April to July, then mostly open water in August and September. The data were collected to calibrate proxy wave measurements using Distributed Acoustic Sensing (DAS) from the telecommunications cable.more » « less
An official website of the United States government
