skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Moorings along the seafloor cable route extending offshore from Oliktok Point, Alaska, from April to September of 2023.
Seafloor moorings measuring pressure and temperature were deployed from April to September 2023 at three sites near the route of the fiber optic telecommunications cable that extends offshore of Oliktok Point, Alaska. The raw data data (1 Hertz (Hz) sampling) are processed for hourly estimates of the ocean surface wave conditions, along with average seawater temperature and average depth. The sites were ice-covered from April to July, then mostly open water in August and September. The data were collected to calibrate proxy wave measurements using Distributed Acoustic Sensing (DAS) from the telecommunications cable.  more » « less
Award ID(s):
2214651 2215134
PAR ID:
10501135
Author(s) / Creator(s):
;
Publisher / Repository:
NSF Arctic Data Center
Date Published:
Subject(s) / Keyword(s):
ocean waves ocean temperature
Format(s):
Medium: X
Location:
Oliktok Point, Alaska
Sponsoring Org:
National Science Foundation
More Like this
  1. Six small coastal moorings were deployed in Harrison Bay for approximately 30 days between early August and early September. Two moorings were outfitted with Nortek Aquadopps and optical backscatter sensors and the remainder were outfitted with RBR sensors which recorded some combination of salinity, temperature, pressure, and turbidity. All sensors were mounted within approximately 0.5 meters (m) of the bed to capture boundary-layer dynamics. Turbidity values were converted to total suspended solids concentrations. Wave parameters (significant wave height, peak wave period, and wave direction) were post-processed from Aquadopp data. Shear velocities (used in sediment-transport research) were calculated from current and wave data at the sites where Aquadopps were mounted. Data have been used in support of a publication, "Summertime sediment convergence on the Alaskan Beaufort Shelf and implications for ice rafting." 
    more » « less
  2. Abstract Simultaneous OH(6,2) and O(1S) nightglow measurements obtained at the Andes Lidar Observatory (ALO) (30.3°S, 70.7°W) from September 2011 to April 2018 have been analyzed to investigate an unusual intensity pattern, that is, O(1S) nightglow intensity enhancement concurrent with OH(6,2) nightglow intensity weakening. We identified 142 nights showing that behavior during the ∼6.5‐year period. The data set comprised of these 142 nights displayed a semiannual occurrence rate with maxima during the equinoxes. A semidiurnal tide fitting applied to the 30‐min bin size monthly averaged data shows that the largest amplitudes of the tide occur in April–May and August–September in both OH(6,2) and O(1S). SABER atomic oxygen (O) climatology near ALO shows higher O densities near the equinoxes, with maximum O densities in March and September at ∼96 km. Lidar temperature analysis suggests that the O(1S) enhancement concurrent with the OH(6,2) weakening is often accompanied by a temperature increase at 96 km and a decrease at 87 km. Simulations using airglow models have also been carried out to investigate the effect of a long‐period oscillation on the OH(6,2) and O(1S) airglow intensities. A sensitivity study has also been conducted to illustrate the effect of the characteristics of a long‐period wave on the airglow intensity patterns. 
    more » « less
  3. Abstract Large nonlinear internal solitary waves (NLIWs) are known to transit west northwest across the northeastern South China Sea from generation sites around the two‐ridge system in the Luzon Strait. The waves are important because their energy flux and dissipation are several orders of magnitude larger than the surrounding ocean. The wave transit has been well studied up to about the 100 m isobath but observations in shallower water have been scarce. Using oceanographic moorings and an innovative distributed temperature sensing optical cable, the NLIW transformations were observed from 2000 to 2 m on the flanks of Dongsha Atoll (Pratas Reef). Possible outcomes included reflection, refraction around the island, wave breaking, and penetration into shallow water. Upslope penetration depended on incident wave amplitude and direction as well as the local stratification. 
    more » « less
  4. This dataset contains field measurements taken during water sampling from 100 urban stream locations in the greater Miami, Florida metropolitan area. Field collection took place during five synoptic sampling events: Summer 2021 (Wet; July 8 to July 27), Fall 2021 (Wet; September 27 to October 7), Winter 2022 (Dry; January 3 to January 13), Spring 2022 (Dry; April 7 to April 23), and Summer 2022 (Wet; June 1 to June 13) to capture spatial and seasonal variation in stream conditions (specific conductivity, water temperature, dissolved oxygen, pH). Filtered stream samples were analyzed for dissolved organic carbon concentration and characteristics, available in a separate dataset. These data were collected as part of the Carbon in Urban Rivers Biogeochemistry (CURB) Project. Detailed field data and site data are published separately and can be linked using the “curbid” and “synoptic_event” columns in each dataset. 
    more » « less
  5. Abstract The attenuation of ocean surface waves during seasonal ice cover is an important control on the evolution of Arctic coastlines. The spatial and temporal variations in this process have been challenging to resolve with conventional sampling using sparse arrays of moorings or buoys. We demonstrate a novel method for persistent observation of wave‐ice interactions using distributed acoustic sensing (DAS) along existing seafloor fiber optic telecommunications cables. DAS measurements span a 36‐km cross‐shore cable on the Beaufort Shelf from Oliktok Point, Alaska. DAS optical sensing of fiber strain‐rate provides a proxy for seafloor pressure, which we calibrate with wave buoy measurements during the ice‐free season (August 2022). We apply this calibration during the ice formation season (November 2021) to obtain unprecedented resolution of variable wave attenuation rates in new, partial ice cover. The location and strength of wave attenuation serve as proxies for ice coverage and thickness, especially during rapidly evolving events. 
    more » « less