Floquet (periodically driven) systems can give rise to unique nonequilibrium phases of matter without equilibrium analogs. The most prominent example is the realization of discrete time crystals. An intriguing question emerges: What other novel phases can manifest when the constraint of time periodicity is relaxed? In this study, we explore quantum systems subjected to a quasiperiodic drive. Leveraging a strongly interacting spin ensemble in diamond, we identify the emergence of long-lived discrete time quasicrystals. Unlike conventional time crystals, time quasicrystals exhibit robust subharmonic responses at multiple incommensurate frequencies. Furthermore, we show that the multifrequency nature of the quasiperiodic drive allows for the formation of diverse patterns associated with different discrete time quasicrystalline phases. Our findings demonstrate the existence of nonequilibrium phases in quasi-Floquet settings, significantly broadening the catalog of novel phenomena in driven many-body quantum systems. Published by the American Physical Society2025 
                        more » 
                        « less   
                    
                            
                            Rise and fall of patterns in driven-dissipative Rydberg polaritons
                        
                    
    
            In this study, we present an exploration of spontaneous symmetry breaking and pattern formation in the driven-dissipative system of Rydberg exciton polaritons with long-range interactions. Our investigation unravels the pattern formations through modulational instability, characterized by scales in the micron range. We observe the dynamics of the polariton ensemble, studying the emergence of metastable patterns and their eventual collapse in the long-time limit. This phenomenon is attributed to the destructive interference between the polariton state and the external drive within the ensemble. Further, we delineate conditions conducive to the stable formation of patterns under incoherent pumping. These findings open up various avenues for delving into the burgeoning realm of driven-dissipative and long-range interacting gases through the unique characteristics of Rydberg excitons. Published by the American Physical Society2024 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2224960
- PAR ID:
- 10537311
- Publisher / Repository:
- Physical Research Review
- Date Published:
- Journal Name:
- Physical Review Research
- Volume:
- 6
- Issue:
- 3
- ISSN:
- 2643-1564
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            We present a mesoscale field theory unifying the modeling of growth, elasticity, and dislocations in quasicrystals. The theory is based on the amplitudes entering their density-wave representation. We introduce a free energy functional for complex amplitudes and assume nonconserved dissipative dynamics to describe their evolution. Elasticity, including phononic and phasonic deformations, along with defect nucleation and motion, emerges self-consistently by prescribing only the symmetry of quasicrystals. Predictions on the formation of semicoherent interfaces and dislocation kinematics are given. Published by the American Physical Society2024more » « less
- 
            Realistic quantum systems are affected by environmental loss, which is often seen as detrimental for applications in quantum technologies. Alternatively, weak coupling to an environment can aid in stabilizing highly entangled and mixed states, but determining optimal system-environment parameters can be challenging. Here, we describe a technique to optimize parameters for generating desired nonequilibrium steady states (NESSs) in driven-dissipative quantum systems governed by the Lindblad equation. We apply this approach to predict highly entangled and mixed NESSs in Ising, Kitaev, and Dicke models in several quantum phases. Published by the American Physical Society2025more » « less
- 
            Nonreciprocal interactions fueled by local energy consumption can be found in biological and synthetic active matter at scales where viscoelastic forces are important. Such systems can be described by “odd” viscoelasticity, which assumes fewer material symmetries than traditional theories. Here we study odd viscoelasticity analytically and using lattice Boltzmann simulations. We identify a pattern-forming instability which produces an oscillating array of fluid vortices, and we elucidate which features govern the growth rate, wavelength, and saturation of the vortices. Our observation of pattern formation through odd mechanical response can inform models of biological patterning and guide engineering of odd dynamics in soft active matter systems. Published by the American Physical Society2024more » « less
- 
            We show that several models of interacting spin chains subject to boundary driving and dissipation possess a subtle kind of time-reversal symmetry, making their steady states exactly solvable. We focus on a model with a coherent boundary drive, showing that it exhibits a unique continuous dissipative phase transition as a function of the boundary drive amplitude. This transition has no analog in the bulk closed system or in incoherently driven models. We also show the steady-state magnetization exhibits a surprising fractal dependence on interaction strength, something previously associated with less easily measured infinite-temperature transport quantities (the Drude weight). Our exact solution also directly yields driven-dissipative double-chain models that have pure, entangled steady states that are current carrying. Published by the American Physical Society2025more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    