skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Improving estimation of diurnal land surface temperatures by integrating weather modeling with satellite observations
Land surface temperature (LST) derived from satellite observations and weather modeling has been widely used for investigating Earth surface-atmosphere energy exchange and radiation budget. However, satellite-derived LST has a trade-off between spatial and temporal resolutions and missing observations caused by clouds, while there are limitations such as potential bias and expensive computation in model calibration and simulation for weather modeling. To mitigate those limitations, we proposed a WRFM framework to estimate LST at a spatial resolution of 1 km and temporal resolution of an hour by integrating the Weather Research and Forecasting (WRF) model and MODIS satellite data using the morphing technique. We tested the framework in eight counties, Iowa, USA, including urban and rural areas, to generate hourly LSTs from June 1st to August 31st, 2019, at a 1 km resolution. Upon evaluation with in-situ LST measurements, our WRFM framework has demonstrated its ability to capture hourly LSTs under both clear and cloudy conditions, with a root mean square error (RMSE) of 2.63 K and 3.75 K, respectively. Additionally, the assessment with satellite LST observations has shown that the WRFM framework can effectively reduce the bias magnitude in LST from the WRF simulation, resulting in a reduction of the average RMSE over the study area from 4.34 K (daytime) and 4.12 K (nighttime) to 2.89 K (daytime) and 2.75 K (nighttime), respectively, while still capturing the hourly patterns of LST. Overall, the WRFM is effective in integrating the complementary advantages of satellite observations and weather modeling and can generate LSTs with high spatiotemporal resolutions in areas with complex landscapes (e.g., urban).  more » « less
Award ID(s):
1855902
PAR ID:
10586381
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Remote sensing of environment
Volume:
315
ISSN:
0034-4257
Page Range / eLocation ID:
114393
Subject(s) / Keyword(s):
Land surface temperature Diurnal cycle WRF Morphing technique Cloud contamination Urban heat island
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Land surface temperature (LST) is one of the most important and widely used parameters for studying land surface processes. Moderate ResolutionImaging Spectroradiometer (MODIS) LST products (e.g., MOD11A1 and MYD11A1) can provide this information with moderate spatiotemporal resolution withglobal coverage. However, the applications of these data are hampered because of missing values caused by factors such as cloud contamination,indicating the necessity to produce a seamless global MODIS-like LST dataset, which is still not available. In this study, we used a spatiotemporalgap-filling framework to generate a seamless global 1 km daily (mid-daytime and mid-nighttime) MODIS-like LST dataset from 2003 to 2020based on standard MODIS LST products. The method includes two steps: (1) data pre-processing and (2) spatiotemporal fitting. In the datapre-processing, we filtered pixels with low data quality and filled gaps using the observed LST at another three time points of the same day. In thespatiotemporal fitting, first we fitted the temporal trend (overall mean) of observations based on the day of year (independent variable) in eachpixel using the smoothing spline function. Then we spatiotemporally interpolated residuals between observations and overall mean values for eachday. Finally, we estimated missing values of LST by adding the overall mean and interpolated residuals. The results show that the missing values inthe original MODIS LST were effectively and efficiently filled with reduced computational cost, and there is no obvious block effect caused by largeareas of missing values, especially near the boundary of tiles, which might exist in other seamless LST datasets. The cross-validation withdifferent missing rates at the global scale indicates that the gap-filled LST data have high accuracies with the average root mean squared error(RMSE) of 1.88 and 1.33∘, respectively, for mid-daytime (13:30) and mid-nighttime (01:30). The seamless global daily (mid-daytime andmid-nighttime) LST dataset at a 1 km spatial resolution is of great use in global studies of urban systems, climate research and modeling,and terrestrial ecosystem studies. The data are available at Iowa State University's DataShare at https://doi.org/10.25380/iastate.c.5078492 (T. Zhanget al., 2021). 
    more » « less
  2. Abstract Surface‐atmosphere fluxes and their drivers vary across space and time. A growing area of interest is in downscaling, localizing, and/or resolving sub‐grid scale energy, water, and carbon fluxes and drivers. Existing downscaling methods require inputs of land surface properties at relatively high spatial (e.g., sub‐kilometer) and temporal (e.g., hourly) resolutions, but many observed land surface drivers are not continuously available at these resolutions. We evaluate an approach to overcome this challenge for land surface temperature (LST), a World Meteorological Organization Essential Climate Variable and a key driver for surface heat fluxes. The Chequamegon Heterogenous Ecosystem Energy‐balance Study Enabled by a High‐density Extensive Array of Detectors (CHEESEHEAD19) field experiment provided a scalable testbed. We downscaled LST from satellites (GOES‐16 and ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station [ECOSTRESS]) with further refinement using airborne hyperspectral imagery. Temporally and spatially downscaled LST compared well to independent observations from a network of 20 micrometeorological towers and piloted aircrafts in addition to Landsat‐based LST retrieval and drone‐based LST observed at one tower site. The downscaled 50‐m hourly LST showed good relationships with tower (r2 = 0.79, RMSE = 3.5 K) and airborne (r2 = 0.75, RMSE = 2.4 K) observations over space and time, with precision lower over wetlands and lakes, and some improvement for capturing spatio‐temporal variation compared to a geostationary satellite. Further downscaling to 10 m using hyperspectral imagery resolved hot and cold spots across the landscape as evidenced by independent drone LST, with significant reduction in RMSE by 1.3 K. These results demonstrate a simple pathway for multi‐sensor retrieval of high space and time resolution LST. 
    more » « less
  3. Abstract Land surface temperature (LST) is crucial for understanding earth system processes. We expanded the Advanced Baseline Imager Live Imaging of Vegetated Ecosystems (ALIVE) framework to estimate LST in near‐real‐time for both cloudy and clear sky conditions at a five‐minute resolution. We compared two machine learning (ML) models, Long Short‐Term Memory (LSTM) networks and Gradient Boosting Regressor (GBR), using top‐of‐atmosphere observations from the Advanced Baseline Imager (ABI) on the GOES‐16 satellite against observations from hundreds of observation sites for a five‐year period. Long Short‐Term Memory outperformed GBR, especially at coarser resolutions and under challenging conditions, with a clear sky R2of 0.96 (RMSE 2.31K) and a cloudy sky R2of 0.83 (RMSE 4.10K) across CONUS, based on 10‐repeat Leave‐One‐Out Cross‐Validation (LOOCV). GBR maintained high accuracy and ran 5.3 times faster, with only a 0.01–0.02 R2drop. Feature importance revealed infrared bands were key in both models, with LSTM adapting dynamically to atmospheric changes, while GBR utilized more time information in cloudy conditions. A comparative analysis against the physically based ABILSTproduct showed strong agreement in winter, particularly under clear sky conditions, while also highlighting the challenges of summer LST estimation due to increased thermal variability. This study underscores the strengths and limitations of data‐driven models for LST estimation and suggests potential pathways for integrating ML models to enhance the accuracy and coverage of LST products. 
    more » « less
  4. With rising global temperatures, urban environments are increasingly vulnerable to heat stress, often exacerbated by the Urban Heat Island (UHI) effect. While most UHI research has focused on large metropolitan areas around the world, relatively smaller-sized cities (with a population 100 000–300 000) remain understudied despite their growing exposure to extreme heat and meteorological significance. In particular, urban heat advection (UHA), the transport of heat by mean winds, remains a key but underexplored mechanism in most modeling frameworks. High-resolution numerical weather prediction (NWP) models are essential tools for simulating urban hydrometeorological conditions, yet most prior evaluations have focused on retrospective reanalysis products rather than forecasts. In this study, we assess the performance of a widely used operational weather forecast model, the High-Resolution Rapid Refresh (HRRR), as a representative example of current NWP systems. We investigate its ability to predict spatial and temporal patterns of urban heat and UHA within and around Lubbock, Texas, a small-sized city located in a semi-arid environment in the southwestern US. Using data collected between 1 September 2023, and 31 August 2024 from the Urban Heat Island Experiment in Lubbock, Texas (U-HEAT) network and five West Texas Mesonet stations, we compare 18 h forecasts against in situ observations. HRRR forecasts exhibit a consistent nighttime cold bias at both urban and rural sites, a daytime warm bias at rural locations, and a pervasive dry bias across all seasons. The model also systematically overestimates near-surface wind speeds, further limiting its ability to accurately predict UHA. Although HRRR captures the expected slower nocturnal cooling in urban areas, it does not well capture advective heat transport under most wind regimes. Our findings reveal both systematic biases and urban representation limitations in current high-resolution NWP forecasts. Our forecast–observation comparisons underscore the need for improved urban parameterizations and evaluation frameworks focused on forecast skill, with important implications for heat-risk warning systems and forecasting in small and mid-sized cities. 
    more » « less
  5. Abstract The southern Lake Michigan region of the United States, home to Chicago, Milwaukee, and other densely populated Midwestern cities, frequently experiences high pollutant episodes with unevenly distributed exposure and health burdens. Using the two‐way coupled Weather Research Forecast and Community Multiscale Air Quality Model (WRF‐CMAQ), we investigate criteria pollutants over a southern Lake Michigan domain using 1.3 and 4 km resolution hindcast simulations. We assess WRF‐CMAQ's performance using data from the National Climatic Data Center and Environmental Protection Agency Air Quality System. Our 1.3 km simulation slightly improves on the 4 km simulation's meteorological and chemical performance while also resolving key details in areas of high exposure and impact, that is, urban environments. At 1.3 km, we find that most air quality‐relevant meteorological components of WRF‐CMAQ perform at or above community benchmarks. WRF‐CMAQ's chemical performance also largely meets community standards, with substantial nuance depending on the performance metric and component assessed. For example, hourly simulated NO2and O3are highly correlated with observations (r > 0.6) while PM2.5is less so (r = 0.4). Similarly, hourly simulated NO2and PM2.5have low biases (<10%), whereas O3biases are larger (>30%). Simulated spatial pollutant patterns show distinct urban‐rural footprints, with urban NO2and PM2.520%–60% higher than rural, and urban O36% lower. We use our 1.3 km simulations to resolve high‐pollution areas within individual urban neighborhoods and characterize seasonal changes in O3regimes across tight spatial gradients. Our findings demonstrate both the benefits and limitations of high‐resolution simulations, particularly over urban settings. 
    more » « less