skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: “If a Robot was Teaching, Then Everybody Would Definitely Like School Better”: An Analysis of Grade 3-5 Children’s Perceptions of Learning STEM Vocabulary with an Educational Social Robot
Award ID(s):
2238088
PAR ID:
10586418
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
IEEE
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. For robots to be useful for real-world applications, they must be safe around humans, be adaptable to their environment, and operate in an untethered manner. Soft robots could potentially meet these requirements; however, existing soft robotic architectures are limited by their ability to scale to human sizes and operate at these scales without a tether to transmit power or pressurized air from an external source. Here, we report an untethered, inflated robotic truss, composed of thin-walled inflatable tubes, capable of shape change by continuously relocating its joints, while its total edge length remains constant. Specifically, a set of identical roller modules each pinch the tube to create an effective joint that separates two edges, and modules can be connected to form complex structures. Driving a roller module along a tube changes the overall shape, lengthening one edge and shortening another, while the total edge length and hence fluid volume remain constant. This isoperimetric behavior allows the robot to operate without compressing air or requiring a tether. Our concept brings together advantages from three distinct types of robots—soft, collective, and truss-based—while overcoming certain limitations of each. Our robots are robust and safe, like soft robots, but not limited by a tether; are modular, like collective robots, but not limited by complex subunits; and are shape-changing, like truss robots, but not limited by rigid linear actuators. We demonstrate two-dimensional (2D) robots capable of shape change and a human-scale 3D robot capable of punctuated rolling locomotion and manipulation, all constructed with the same modular rollers and operating without a tether. 
    more » « less
  2. null (Ed.)
    Childhood ambulatory disabilities detract from not only the physical development, but also the social engagement of young children. Commercial mobility aids can help improve the autonomy of children with disabilities, but affordability issues, policy challenges, and uncertainty about training standards limit early use of these devices. In this paper, we build on affordable research-grade mobility aids for young children and consider how to design and evaluate an assistive robot that can support the use of these devices. With young children’s contingency learning abilities in mind, we designed an assistive mobile robot capable of supplying age-appropriate light, sound, and bubble rewards. We conducted a first evaluation of the robot’s ability to support driving practice with N = 5 typically developing infants. The results indicate mixed success of the robot rewards; driving distances uniformly tended to fall over the course of the study, but children did tend to look at the robot. In a second exploratory study involving N = 6 children in free ambulatory play, we see clearer differences in gaze and behavior from the introduction of an assistive robot. Generally, this research can inform others interested in assistive robotic interventions for young children. 
    more » « less
  3. null (Ed.)
    Interest in the investigation of novel software and control algorithms for wearable robotics is growing. However, entry into this field requires a significant investment in a testing platform. This work introduces CANopen Robot Controller (CORC)—an open source software stack designed to accelerate the development of robot software and control algorithms—justifying its choice of platform, describing its overall structure, and demonstrating its viability on two distinct platforms. 
    more » « less
  4. null (Ed.)
    Abstract This study presents robot-based rehabilitation and its assessment. Robotic devices have significantly been useful to help therapists do the training procedure consistently. However, as robotic devices interface with humans, quantifying the interaction and its intended outcomes is still a research challenge. In this study, human–robot interaction during rehabilitation is assessed based on measurable interaction forces and human physiological response data, and correlations are established to plan the intervention and effective limb trajectories within the intended rehabilitation and interaction forces. In this study, the Universal Robot 5 (UR5) is used to guide and support the arm of a subject over a predefined trajectory while recording muscle activities through surface electromyography (sEMG) signals using the Trigno wireless DELSYS devices. The interaction force is measured through the force sensor mounted on the robot end-effector. The force signals and the human physiological data are analyzed and classified to infer the related progress. Feature reduction and selection techniques are used to identify redundant inputs and outputs. 
    more » « less