skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Reinforcement Learning-Enhanced Cloud-Based Open Source Analog Circuit Generator for Standard and Cryogenic Temperatures in 130-nm and 180-nm OpenPDKs
Award ID(s):
2235440
PAR ID:
10586513
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
ACM
Date Published:
ISBN:
9798400710773
Page Range / eLocation ID:
1 to 7
Format(s):
Medium: X
Location:
Newark Liberty International Airport Marriott New York NY USA
Sponsoring Org:
National Science Foundation
More Like this
  1. We built a simple and versatile setup to measure tissue ballistic and total transmission with customizable wavelength range, spatial resolution, and sample sizes. We performed ballistic transmission and total transmission measurements of overlying structures from biological samplesex vivo. We obtained spatially resolved transmission maps to reveal transmission heterogeneity from five microscale tissue samples:Danionellaskin, mouse skull bone, mosquito cuticle, wasp cuticle, and rat dura over a wide spectral range from 450 nm to 1624 nm at a spatial resolution of ∼25µm for ballistic transmission measurements and ∼50µm for total transmission measurements. We expect our method can be straightforwardly applied to measuring the transmission of other samples. The measurement results will be valuable for multiphoton microscopy. The total transmission of a sample is important for the collection of multiphoton excited fluorescence and the assessment of laser-induced sample heating. The ballistic transmission determines the excitation power at the focus and hence the fluorescence signal generation. Therefore, knowledge of ballistic transmission, total transmission, and transmission heterogeneity of overlying structures of animals and organs are essential to determine the optimal excitation wavelength and fluorophores for non-invasive multiphoton microscopy. 
    more » « less
  2. Measurements of three-photon action cross-sections for fluorescein (dissolved in water, pH ∼11.5) are presented in the excitation wavelength range from 1154 to 1500 nm in ∼50 nm steps. The excitation source is a femtosecond wavelength tunable non-collinear optical parametric amplifier, which has been spectrally filtered with 50 nm full width at half maximum band pass filters. Cube-law power dependance is confirmed at the measurement wavelengths. The three-photon excitation spectrum is found to differ from both the one- and two-photon excitation spectra. The three-photon action cross-section at 1154 nm is more than an order of magnitude larger than those at 1450 and 1500 nm (approximately three times the wavelength of the one-photon excitation peak), which possibly indicates the presence of resonance enhancement. 
    more » « less
  3. Microresonator frequency combs and their design versatility have revolutionized research areas from data communication to exoplanet searches. While microcombs in the 1550 nm band are well documented, there is interest in using microcombs in other bands. Here, we demonstrate the formation and spectral control of normal-dispersion dark soliton microcombs at 1064 nm. We generate 200 GHz repetition rate microcombs by inducing a photonic bandgap of the microresonator mode for the pump laser with a photonic crystal. We perform the experiments with normal-dispersion microresonators made from Ta2O5 and explore unique soliton pulse shapes and operating behaviors. By adjusting the resonator dispersion through its nanostructured geometry, we demonstrate control over the spectral bandwidth of these combs, and we employ numerical modeling to understand their existence range. Our results highlight how photonic design enables microcomb spectra tailoring across wide wavelength ranges, offering potential in bioimaging, spectroscopy, and photonic-atomic quantum technologies. 
    more » « less
  4. null (Ed.)
    Advances in the synthesis of low bandgap (Eg < 1.5 eV) conjugated polymers has produced organic materials capable of absorbing near-infrared (NIR) light (800—2500 nm), with these materials first applied to photodiode NIR detectors in 2007 as an alternative to more traditional inorganic devices. Although the development of organic NIR photodetectors has continued to advance, their ability to effectively detect wavelengths in the low-energy portion of the NIR spectrum is still limited. Efforts to date concerning the production of photodiode-based devices capable of detecting light beyond 1000 nm are reviewed. 
    more » « less