skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 1, 2026

Title: Non-linear spectral unmixing for monitoring rapidly salinizing coastal landscapes
Coastal farmlands in the eastern United States of America (USA) are increasingly suffering from rising soil salinity, rendering them unsuitable for economically productive agriculture. Saltwater intrusion (SWI) into the groundwater reservoir or soil salinization can result in land cover modification (e.g. reduced plant growth) or land cover conversion. Two primary examples of such land cover conversion are farmland to marsh or farmland to salt patches with no vegetation growth. However, due to varying spatial granularity of these conversions, it is challenging to quantify these land covers over a large geographic scale. To address this challenge, we evaluated a non-linear spectral unmixing approach with a Random Forest (RF) algorithm to quantify fractional abundance of salt patch and marshes. Using Sentinel-2 imagery from 2022, we generated gridded datasets for salt patches and marshes across the Delmarva Peninsula, and the associated uncertainty. Moreover, we developed two new spectral indices to enhance the spectral unmixing accuracy: the Normalized Difference Salt Patch Index (NDSPI) and the Modified Salt Patch Index (MSPI). We constructed two sets of ten RF models: one for salt patches and the other for marshes, achieving high (>99 %) training and testing accuracies for classification. The consistently high accuracy and low error values across different model runs demonstrate the method's reliability for classifying spectrally similar land cover classes in the mid-Atlantic region and beyond. Validation metrics for sub-pixel fractional abundances in the salt model revealed a moderate R-squared value of 0.50, and a high R-squared value of 0.90 for the marsh model. Our method complements labor-intensive field-based salinity measurements by offering a reproducible method that can be repeated annually and scaled up to cover large geographic regions.  more » « less
Award ID(s):
1652594
PAR ID:
10586620
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Remote Sensing of Environment
Volume:
319
Issue:
C
ISSN:
0034-4257
Page Range / eLocation ID:
114642
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Saltwater intrusion on coastal farmlands can render productive land unsuitable for agricultural activities. While the visible extent of salt-impacted land provides a useful saltwater intrusion proxy, it is challenging to identify in early stages. Moreover, associated ecological and economic impacts are often underestimated as reduced crop yields in farmlands surrounding salt patches are difficult to quantify. Here we develop a high-resolution (1 m) dataset showing salt patches on farm fringes and quantify the extent of salt-impacted lands across the Delmarva Peninsula, United States. Our method is transferable to other regions across and beyond the mid-Atlantic with similar saltwater intrusion issues, such as Georgia and the Carolinas. Our results show that between 2011 and 2017, visible salt patches almost doubled and 8,096 ha of farmlands converted to marsh—another saltwater intrusion consequence. Field-based electrical conductivity measurements show elevated salinity values hundreds of metres from visible salt patches, indicating the broader extent of at-risk farmlands. More farmland areas were within 200 m of a visible salt patch in 2017 compared to 2011, a rise ranging between 68% in Delaware and 93% in Maryland. On the basis of assumed 100% profit loss in at-risk farmlands within a 200 m buffer around salt patches in 2016–2017, the range of economic losses was estimated between US$39.4 million and US$107.5 million annually, under 100% soy or corn counterfactuals, respectively. 
    more » « less
  2. null (Ed.)
    Abstract. Sea-level rise, saltwater intrusion, and wave erosion threaten coastal marshes, but the influence of salinity on marsh erodibility remains poorly understood. We measured the shear strength of marsh soils along a salinity and biodiversity gradient in the York River estuary in Virginia to assess the direct and indirect impacts of salinity on potential marsh erodibility. We found that soil shear strength was higher in monospecific salt marshes (5–36 kPa) than in biodiverse freshwater marshes (4–8 kPa), likely driven by differences in belowground biomass. However, we also found that shear strength at the marsh edge was controlled by sediment characteristics, rather than vegetation or salinity, suggesting that inherent relationships may be obscured in more dynamic environments. Our results indicate that York River freshwater marsh soils are weaker than salt marsh soils, and suggest that salinization of these freshwater marshesmay lead to simultaneous losses in biodiversity and erodibility. 
    more » « less
  3. Salt marshes are vulnerable to sea-level rise, sediment deficits, and storm impacts. To remain vertically resilient, salt marshes must accrete sediment at rates greater or equal to sea-level rise. Ice-rafted debris (IRD), sediment that has been moved and deposited from ice sheets, is one of many processes that contribute to salt marsh sediment accretion in northern latitudes. On 4 January 2018, a winter storm caused major ice mobilization in the Plum Island Estuary (PIE), Massachusetts, USA, which led to large deposits of ice-rafted sediment. We aimed to quantify the volume and mass of deposited sediment, and evaluate the significance of IRD to sediment supply in Plum Island using pixel-based land-cover classification of aerial imagery collected by an Unmanned Aircraft System (UAS) and a Digital Elevation Model. Field measurements of patch thickness, and the area of IRD determined from the classification were used to estimate annual sediment accretion from IRD. Results show that IRD deposits are localized in three areas, and estimates show that IRD contributes an annual sediment accretion rate of 0.57 ± 0.14 mm/y to the study site. New England salt marsh accretion rates typically vary between 2–10 mm/y, and the average PIE sediment accretion rate is 2.5–2.7 mm/y. Therefore, this event contributed on average 20% of the annual volume of material accreted by salt marshes, although locally the deposit thickness was 8–14 times the annual accretion rate. We show that pixel-based classification can be a useful tool for identifying sediment deposits from remote sensing. Additionally, we suggest that IRD has the potential to bring a significant supply of sediment to salt marshes in northern latitudes and contribute to sediment accretion. As remotely sensed aerial imagery from UASs becomes more readily available, this method can be used to efficiently identify and quantify deposited sediment. 
    more » « less
  4. Abstract Salt marshes are vital but vulnerable ecosystems. However, our understanding of disturbance‐induced dieback and recovery processes in multi‐specific marshes remains limited. This study utilized remote sensing data (2001–2021) to analyze a dieback event and subsequent recovery in the multi‐specific San Felice marsh within the Venice lagoon, Italy. A significant dieback ofSpartina maritima(Spartina) was identified in 2003, likely triggered by a drought event and heat stress. This resulted in a conversion of 4.6 ha of marsh predominantly colonized bySpartina(fractional cover ofSpartina> 50%) in 2001 to bare soil in 2003. These bare areas were then gradually encroached by vegetation, indicating the occurrence of the recovery. Despite gradually gaining ground,Spartinaonly dominated 6.4 ha marshes in 2021, significantly lower than its pre‐dieback area (21.3 ha). However, other species also encroached on the dieback area, such that the aboveground biomass returned to pre‐dieback levels, indicating that the shift in marsh species composition that occurred as a consequence of the event compensated for this ecosystem service. Vegetation recovery, spanning from 1 yr to more than 18 yr, was found to be slowest in areas of lowest elevation. This study provides evidence that dieback and recovery can modify the species composition of multi‐specific marshes over decades. These insights contribute to a better understanding of marsh resilience to drought and elevated temperature, both of which are likely to increase in the future. 
    more » « less
  5. null (Ed.)
    Coastal salt marshes are distributed widely across the globe and are considered essential habitat for many fish and crustacean species. Yet, the literature on fishery support by salt marshes has largely been based on a few geographically distinct model systems, and as a result, inadequately captures the hierarchical nature of salt marsh pattern, process, and variation across space and time. A better understanding of geographic variation and drivers of commonalities and differences across salt marsh systems is essential to informing future management practices. Here, we address the key drivers of geographic variation in salt marshes: hydroperiod, seascape configuration, geomorphology, climatic region, sediment supply and riverine input, salinity, vegetation composition, and human activities. Future efforts to manage, conserve, and restore these habitats will require consideration of how environmental drivers within marshes affect the overall structure and subsequent function for fisheries species. We propose a future research agenda that provides both the consistent collection and reporting of sources of variation in small-scale studies and collaborative networks running parallel studies across large scales and geographically distinct locations to provide analogous information for data poor locations. These comparisons are needed to identify and prioritize restoration or conservation efforts, identify sources of variation among regions, and best manage fisheries and food resources across the globe. Introduction Understanding the drivers of geographic variation in the condition and composition of habitats is crucial to our capacity to generalize management plans across space and time and to clarify and perhaps challenge assumptions of functional equivalence among sites. Broadly defined wetland types such as salt marshes are often assumed to provide similar functions throughout their global range, such as providing nursery habitat for fishery species. However, a growing body of evidence suggests substantial geographic variation in the functioning of salt marsh and other coastal ecosystems (Bradley et al. 2020; Whalen et al. 2020). Variation in ecological patterns and processes within habitat types can alter community structure and dynamics. Local-scale patterns and processes (e.g., patch [10s of meters], local [100s of meters]) can be influenced by processes that occur at larger spatial scales (e.g., regional [kms], global), thereby causing geographic differences in the function and ecosystem service delivery of a given habitat type. Salt marshes (which include vegetated platform, interconnected tidal creeks, fringing mudflats, ponds, and pools) are widely distributed (Fig. 1) and function as valuable nursery habitats by providing key resources for many estuarine species that transition to marine or aquatic habitats as adults (Beck et al. 2001; Minello et al. 2003; Sheaves et al. 2015). However, factors that underlie variability in the delivery of ecological functions are still inadequately understood. Previous studies have explored geographic variation in the function of salt marshes for fish and mobile crustaceans (“nekton”; e.g., Minello et al. 2012, Baker et al. 2013). However, field studies that compare multiple sites across a geographical gradient are typically limited in duration and scale. In addition, the explanatory variables (e.g., elevation, flooding duration, plant structure) collected by smaller scale studies are often inconsistent and therefore limit generalizations across sites. 
    more » « less