skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2025

Title: Understanding Spatiotemporal Patterns and Drivers of Urban Flooding Using Municipal Reports
ABSTRACT Urban flooding is an increasing threat to cities and resident well‐being. The Federal Emergency Management Agency (FEMA) typically reports losses attributed to flooding which result from a stream overtopping its banks, discounting impacts of higher frequency, lower impact flooding that occurs when precipitation intensity exceeds the capacity of a drainage system. Despite its importance, the drivers of street flooding can often be difficult to identify, given street flooding data scarcity and the multitude of storm, built environment, and social factors involved. To address this knowledge gap, this study uses 922 street flooding reports to the city in Denver, Colorado, USA from 2000 to 2019 in coordination with rain gauge network data and Census tract information to improve understanding of spatiotemporal drivers of urban flooding. An initial threshold analysis using rainfall intensity to predict street flooding had performance close to random chance, which led us to investigate other drivers. A logistic regression describing the probability of a storm leading to a flood report showed the strongest predictors of urban flooding were, in descending order, maximum 5‐min rainfall intensity, population density, storm depth, storm duration, median tract income, and stormwater pipe density. The logistic regression also showed that rainfall intensity and population density are nearly as important in determining the likelihood of a flood report incidence. In addition, topographic wetness index values at locations of flooding reports were higher than randomly selected points. A linear regression predicting the number of reports per area identified percent impervious as the single most important predictor. Our methodologies can be used to better inform urban flood awareness, response, and mitigation and are applicable to any city with flood reports and spatial precipitation data.  more » « less
Award ID(s):
2318903 2045340
PAR ID:
10586627
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Hydrological Processes
Date Published:
Journal Name:
Hydrological Processes
Volume:
38
Issue:
12
ISSN:
0885-6087
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Climate change and sea-level rise are increasingly leading to higher and prolonged high tides, which, in combination with the growing intensity of rainfall and storm surges, and insufficient drainage infrastructure, result in frequent recurrent flooding in coastal cities. There is a pressing need to understand the occurrence of roadway flooding incidents in order to enact appropriate mitigation measures. Agency data for roadway flooding events are scarce and resource-intensive to collect. Crowdsourced data can provide a low-cost alternative for mapping roadway flood incidents in real time; however, the reliability is questionable. This research demonstrates a framework for asserting trustworthiness on crowdsourced flood incident data in a case study of Norfolk, Virginia. Publicly available (but spatially limited) flood incident data from the city in combination with different environmental and topographical factors are used to create a logistic regression model to predict the probability of roadway flooding at any location on the roadway network. The prediction accuracy of the model was found to be 90.5%. When applying this model to crowdsourced Waze flood incident data, 71.7% of the reports were predicted to be trustworthy. This study demonstrates the potential for using Waze incident report data for roadway flooding detection, providing a framework for cities to identify trustworthy reports in real time to enable rapid situation assessment and mitigation to reduce incident impact. 
    more » « less
  2. The relationship between cities and wetland cover varies across the globe, with some cities converting wetlands to low‐ and high‐density urban cover and others preserving, conserving, or restoring wetlands, or constructing new ones. However, the scientific literature lacks studies relating changes in systemic flood risk in an urban stormwater management systems to changes in wetland cover. Furthermore, whether and how such relationships are affected by changing storm intensity under climate change is unknown. We present a case study on the effects of changes in urban wetland extent and storm intensity on flooding in an urban drainage system in Valdivia, Chile, under several co‐produced future scenarios and historical trends of development. We used data derived from stakeholder workshops and historical landcover to determine four plausible scenarios of urban development, plus one business‐as‐usual scenario, in Valdivia through the year 2080. Additionally, we used historical precipitation data and downscaled climate data to estimate event rainfall from extreme storms in the year 2080. We found that system flood volume and time the system was flooded increased with increasing wetland loss and rainfall volume. Mean rate and hour of peak discharge were unaffected by wetland loss. Infiltration's relative role in reducing flooding diminished as wetland loss increased. Cities may still experience dangerous and/or unacceptable flooding even with extensive wetland coverage and will likely need to pair conservation with additional improvements in their stormwater management systems and contributing watersheds. 
    more » « less
  3. The use of crowdsourced data has been finding practical use for enhancing situational awareness during disasters. While recent studies have shown promising results regarding the potential of crowdsourced data (such as user-generated flood reports) for flash flood mapping and situational awareness, little attention has been paid to data imbalance issues that could introduce biases in data and assessment. To address this gap, in this study, we examine biases present in crowdsourced reports to identify data imbalance with a goal of improving disaster situational awareness. Three biases are examined: sample bias, spatial bias, and demographic bias. To examine these biases, we analyzed reported flooding from 3-1-1 reports (which is a citizen hotline allowing the community to report problems such as flooding) and Waze reports (which is a GPS navigation app that allows drivers to report flooded roads) with respect to FEMA damage data collected in the aftermaths of Tropical Storm Imelda in Harris County, Texas, in 2019 and Hurricane Ida in New York City in 2021. First, sample bias is assessed by expanding the flood-related categories in 3-1-1 reports. Integrating other flooding related topics into the Global Moran's I and Local Indicator of Spatial Association (LISA) revealed more communities that were impacted by floods. To examine spatial bias, we perform the LISA and BI-LISA tests on the data sets—FEMA damage, 3-1-1 reports, and Waze reports—at the census tract level and census block group level. By looking at two geographical aggregations, we found that the larger spatial aggregations, census tracts, show less data imbalance in the results. Through a regression analysis, we found that 3-1-1 reports and Waze reports have data imbalance limitations in areas where minority populations and single parent households reside. The findings of this study advance understanding of data imbalance and biases in crowdsourced datasets that are growingly used for disaster situational awareness. Through addressing data imbalance issues, researchers and practitioners can proactively mitigate biases in crowdsourced data and prevent biased and inequitable decisions and actions. 
    more » « less
  4. The structure and evolution of flash flood–producing storms over a small urban watershed in the mid-Atlantic United States with a prototypical flash flood response is examined. Lagrangian storm properties are investigated through analyses of the 32 storms that produced the largest peak discharges in Moores Run between January 2000 and May 2014. The Thunderstorm Identification, Tracking, Analysis, and Nowcasting (TITAN) algorithm is used to track storm characteristics over their life cycle with a focus on storm size, movement, intensity, and location. First, the 13 June 2003 and 1 June 2006 storms, which produced the two largest peak discharges for the study period, are analyzed. Heavy rainfall for the 13 June 2003 and 1 June 2006 storms were caused by a collapsing thunderstorm cell and a slow-moving, low-echo centroid storm. Analyses of the 32 storms show that collapsing storm cells play an important role in peak rainfall rate production and flash flooding. Storm motion is predominantly southwest-to-northeast, and approximately half of the storms exhibited some linear organization. Mean storm total rainfall for the 32 storms displayed an asymmetric distribution around Moores Run, with sharply decreasing gradients southwest of the watershed (upwind and into the city) and increased rainfall to the northeast (downwind and away from the city). Results indicate urban modification of rainfall in flash flood–producing storms. There was no evidence that the storms split around Baltimore. Flood-producing rainfall was highly concentrated in time; on average, approximately 21% of the storm total rainfall fell within 15 min. 
    more » « less
  5. Abstract. In coastal regions, compound flooding can arise from a combination of different drivers such as storm surges, high tides, excess river discharge, and rainfall. Compound flood potential is often assessed by quantifying the dependence and joint probabilities of the flood drivers using multivariate models. However, most of these studies assume that all extreme events originate from a single population. This assumption may not be valid for regions where flooding can arise from different generation processes, e.g., tropical cyclones (TCs) and extratropical cyclones (ETCs). Here we present a flexible copula-based statistical framework to assess compound flood potential from multiple flood drivers while explicitly accounting for different storm types. The proposed framework is applied to Gloucester City, New Jersey, and St. Petersburg, Florida as case studies. Our results highlight the importance of characterizing the contributions from TCs and non-TCs separately to avoid potential underestimation of the compound flood potential. In both study regions, TCs modulate the tails of the joint distributions (events with higher return periods) while non-TC events have a strong effect on events with low to moderate joint return periods. We show that relying solely on TCs may be inadequate when estimating compound flood risk in coastal catchments that are also exposed to other storm types. We also assess the impact of non-classified storms that are neither linked to TCs or ETCs in the region (such as locally generated convective rainfall events and remotely forced storm surges). The presented study utilizes historical data and analyzes two populations, but the framework is flexible and can be extended to account for additional storm types (e.g., storms with certain tracks or other characteristics) or can be used with model output data including hindcasts or future projections. 
    more » « less