skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 1, 2026

Title: Bioreactor contamination monitoring using off-gassed volatile organic compounds (VOCs)
Metabolically active cells emit volatile organic compounds (VOCs) that can be used in real time to non-invasively monitor the health of cell cultures. We utilized these naturally occurring VOCs in an adapted culture method to detect differences in culturing Chinese hamster ovary (CHO) cells with and without Staphylococcus epidermidis and Aspergillus fumigatus contaminations. The VOC emissions from the cell cultures were extracted and measured from the culture flask headspace using polydimethylsiloxane (PDMS)-coated Twisters, which were subjected to thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) analysis. In our initial time points of 1 and 2 h, we detected VOC signatures that differentiated the cultures earlier than traditional plating techniques or visualization methods. Partial least squares-discriminant analysis (PLS-DA) models were built to differentiate the analytes from the CHO cells and S. epidermidis- and A. fumigatus-inoculated CHO cultures. A total of 41 compounds with a variable importance in projection (VIP) score greater than 1 was obtained across the models. Similarly, based on the PLS regression analyses to predict the cell concentration of S. epidermidis (R2 = 0.891) and A. fumigatus (R2 = 0.375), 15 and 20 relevant compounds were putatively identified, respectively; two known compounds overlapped between the two microbes. Some of the compounds were unidentified and future studies will deter- mine the relationship between the VOCs and the metabolic changes in contaminated cultures.  more » « less
Award ID(s):
2412522 2430865
PAR ID:
10586701
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Springer Nature
Date Published:
Journal Name:
Analytical and Bioanalytical Chemistry
Volume:
417
Issue:
6
ISSN:
1618-2642
Page Range / eLocation ID:
1165 to 1176
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Previous studies have shown that volatile organic compounds (VOCs) are potential biomarkers of breast cancer. An unanswered question is how urinary VOCs change over time as tumors progress. To explore this, BALB/c mice were injected with 4T1.2 triple negative murine tumor cells in the tibia. This typically causes tumor progression and osteolysis in 1–2 weeks. Samples were collected prior to tumor injection and from days 2–19. Samples were analyzed by headspace solid phase microextraction coupled to gas chromatography–mass spectrometry. Univariate analysis identified VOCs that were biomarkers for breast cancer; some of these varied significantly over time and others did not. Principal component analysis was used to distinguish Cancer (all Weeks) from Control and Cancer Week 1 from Cancer Week 3 with over 90% accuracy. Forward feature selection and linear discriminant analysis identified a unique panel that could identify tumor presence with 94% accuracy and distinguish progression (Cancer Week 1 from Cancer Week 3) with 97% accuracy. Principal component regression analysis also demonstrated that a VOC panel could predict number of days since tumor injection (R2 = 0.71 and adjusted R2 = 0.63). VOC biomarkers identified by these analyses were associated with metabolic pathways relevant to breast cancer. 
    more » « less
  2. The ocean is a vast reservoir of bioavailable dissolved organic compounds (DOCs). Phytoplankton and bacterioplankton are the primary producers and consumers of these organic compounds, respectively, driving DOCs turnover on timescales of minutes to days. Volatile organic compounds (VOCs) make up about a third of DOCs, and their diffusivity and reactivity cause them to be important contributors to plankton carbon cycling and atmospheric chemistry. This research sought to describe plankton interactions mediated by VOCs. A model diatom, Phaeodactylum tricornutum, and five bacterial species known to be associated with the P. tricornutum phycosphere were studied in monocultures and co-cultures. Investigations evaluated the VOCs produced and consumed, temporal dynamics of VOC production and their roles in diatom metabolism, and physiological strategies of bacterial VOC consumers. P. tricornutum produced 78 VOCs during exponential growth. About 60% of these VOCs were hydrocarbons. In co-cultures with P. tricornutum, bacteria consumed different ranges of VOCs. The VOC specialists, Marinobacter and Roseibium, consumed the most, had hydrocarbon oxidation genes, and showed motility and physical attachment to the diatom. Rhodobacter and Stappia consumed fewer VOCs and were non-motile, while Yoonia consumed only acetaldehyde. Diatom gross carbon fixation was 29% higher in the presence of VOC specialists, suggesting rapid VOC consumption in the phycosphere impacts global gross carbon production. Temporal VOC production in P. tricornutum was monitored over a diel cycle. All VOCs were produced in higher concentrations during the day compared to night. Regression spline functions revealed six unique temporal production patterns associated with diel shifts in metabolism and the cell cycle. Physiological strategies for VOC uptake were studied in the VOC specialist Marinobacter. Marinobacter consumed some benzenoids at concentrations ranging from pM to μM and most increased cell densities compared to no VOC added controls and were not chemoattractants. Other VOCs that did not stimulate higher cell densities were strong chemoattractants. Thus, some VOCs are chemoattractants that guide motile cells toward co-emitted growth substrates. VOC discrimination may optimize spatial and temporal positioning in the phycosphere and enhance VOC uptake, sustaining the extremely low VOC concentrations in the surface ocean. This research revealed phytoplankton and ii bacterioplankton physiological processes that underlie the biological cycling of surface ocean VOCs and their potential for air-sea flux. This dissertation on microbiology in the phycosphere provided a foundation for exploring elements of science art that promote audience engagement through an exhibition that used scientific findings from the dissertation. Original art and audience surveys were used iteratively to increase science accessibility to general audiences. 
    more » « less
  3. null (Ed.)
    Abstract Background As bioprocess intensification has increased over the last 30 years, yields from mammalian cell processes have increased from 10’s of milligrams to over 10’s of grams per liter. Most of these gains in productivity can be attributed to increasing cell densities within bioreactors. As such, strategies have been developed to minimize accumulation of metabolic wastes, such as lactate and ammonia. Unfortunately, neither cell growth nor biopharmaceutical production can occur without some waste metabolite accumulation. Inevitably, metabolic waste accumulation leads to decline and termination of the culture. While it is understood that the accumulation of these unwanted compounds imparts a suboptimal culture environment, little is known about the genotoxic properties of these compounds that may lead to global genome instability. In this study, we examined the effects of high and moderate extracellular ammonia on the physiology and genomic integrity of Chinese hamster ovary (CHO) cells. Results Through whole genome sequencing, we discovered 2394 variant sites within functional genes comprised of both single nucleotide polymorphisms and insertion/deletion mutations as a result of ammonia stress with high or moderate impact on functional genes. Furthermore, several of these de novo mutations were found in genes whose functions are to maintain genome stability, such as Tp53, Tnfsf11, Brca1, as well as Nfkb1. Furthermore, we characterized microsatellite content of the cultures using the CriGri-PICR Chinese hamster genome assembly and discovered an abundance of microsatellite loci that are not replicated faithfully in the ammonia-stressed cultures. Unfaithful replication of these loci is a signature of microsatellite instability. With rigorous filtering, we found 124 candidate microsatellite loci that may be suitable for further investigation to determine whether these loci may be reliable biomarkers to predict genome instability in CHO cultures. Conclusion This study advances our knowledge with regards to the effects of ammonia accumulation on CHO cell culture performance by identifying ammonia-sensitive genes linked to genome stability and lays the foundation for the development of a new diagnostic tool for assessing genome stability. 
    more » « less
  4. Abstract Chinese hamster ovary (CHO) cells release and exchange large quantities of extracellular vesicles (EVs). EVs are highly enriched in microRNAs (miRs, or miRNAs), which are responsible for most of their biological effects. We have recently shown that the miR content of CHO EVs varies significantly under culture stress conditions. Here, we provide a novel stoichiometric (“per‐EV”) quantification of miR and protein levels in large CHO EVs produced under ammonia, lactate, osmotic, and age‐related stress. Each stress resulted in distinct EV miR levels, with selective miR loading by parent cells. Our data provide a proof of concept for the use of CHO EV cargo as a diagnostic tool for identifying culture stress. We also tested the impact of three select miRs (let‐7a, miR‐21, and miR‐92a) on CHO cell growth and viability. Let‐7a—abundant in CHO EVs from stressed cultures—reduced CHO cell viability, while miR‐92a—abundant in CHO EVs from unstressed cultures—promoted cell survival. Overexpression of miR‐21 had a slight detrimental impact on CHO cell growth and viability during late exponential‐phase culture, an unexpected result based on the reported antiapoptotic role of miR‐21 in other mammalian cell lines. These findings provide novel relationships between CHO EV cargo and cell phenotype, suggesting that CHO EVs may exert both pro‐ and antiapoptotic effects on target cells, depending on the conditions under which they were produced. 
    more » « less
  5. IntroductionVolatile organic compounds (VOCs) are small, low-vapor-pressure molecules emitted from the surface ocean into the atmosphere. In the atmosphere, VOCs can change OH reactivity and condense onto particles to become cloud condensation nuclei. VOCs are produced by phytoplankton, but the conditions leading to VOC accumulation in the surface ocean are poorly understood. MethodsIn this study, VOC accumulation was measured in real time over a 12 h day−12 h night cycle in the model diatomPhaeodactylum tricornutumduring exponential growth. ResultsSixty-threem/zsignals were produced in higher concentrations than in cell-free controls. All VOCs, except methanol, were continuously produced over 24 h. All VOCs accumulated to higher concentrations during the day compared to the night, and 11 VOCs exhibited distinct accumulation patterns during the morning hours. Twenty-seven VOCs were associated with known metabolic pathways inP. tricornutum, with most VOCs involved in amino acid and fatty acid metabolism. DiscussionPatterns of VOC production were strongly associated with diel shifts in cell physiology and the cell cycle. Diel VOC production patterns give a fundamental understanding of the first steps in VOC accumulation in the surface ocean. 
    more » « less