skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 17, 2025

Title: Parylene Capping Layer for Embedded Liquid Mass for MEMS Packaging
Microelectromechanical Systems (MEMS) packaging is over 80% of the cost of a typical MEMS device because there are no standard packaging methods, and each device requires unique packaging. Recently several MEMS devices have illustrated the desire to have a liquid filled cavity within the MEMS device for applications such as biomedical sensors, tunable energy harvesters, or liquid cooling microelectronics. However, embedded liquids in silicon pose a challenge when it comes to packaging. This paper illustrates a novel concept of using a conformal parylene coating to cap or encapsulate the liquid. The concept is validated using various liquids such as various viscosity silicone oils as well as Galinstan a Ga-based liquid metal. The study investigates the packaging reliability through a series of systematic accelerated life-time testing, elevated temperature testing, accelerated soak testing, and mechanical testing (shock and resonant frequency testing). Mass changes were monitored and compared to control (no capping), glass epoxy bonded packaging, and silicone spray coating encapsulation. The results demonstrate the superior mean-time-to-failure of the parylene capping method compared to the other methods. The results confirm that parylene can be used to package embedded liquids in silicon or 3D printed structures.  more » « less
Award ID(s):
2237086
PAR ID:
10586737
Author(s) / Creator(s):
;
Publisher / Repository:
American Society of Mechanical Engineers
Date Published:
ISBN:
978-0-7918-8868-1
Subject(s) / Keyword(s):
Microelectronics, MEMS, Packaging, Parylene, Embedded Liquid
Format(s):
Medium: X
Location:
Portland, Oregon, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Creating self-sustaining wireless sensor networks to power the Internet of Things requires universal energy harvesting systems. MEMS energy harvesters are in particular demand as they can be batch fabricated to meet the large supply demands. However, currently silicon MEMS kinetic energy harvesters are fabricated with a narrow bandwidth of 1–2 Hz, so each application requires a custom designed device which limits the advantages of batch fabrication. This paper investigates the development of a passive tuning MEMS vibration energy harvesting method that is based on distributing the load to various locations along the proof mass using a liquid load. A 3D printed proof mass with an array of cavities was developed, where each cavity could be filled with liquid to alter the resonant frequency as desired. Cavities were filled with silicone oil to validate the concept. The results illustrate tuning of the frequency with a resolution of < 1 Hz and a range of approximately 50 Hz. This method represents a passive tuning method as no power is required and the tuning can be accomplished during manufacturing so that one single universal energy harvester could be made and then tuned to meet the end user’s frequency specification. 
    more » « less
  2. Micro-scale kinetic energy harvesters are in large demand to function as sustainable power sources for wireless sensor networks and the Internet of Things. However, one of the challenges associated with them is their inability to easily tune the frequency during the manufacturing process, requiring devices to be custom-made for each application. Previous attempts have either used active tuning, which consumes power, or passive devices that increase their energy footprint, thus decreasing power density. This study involved developing a novel passive method that does not alter the device footprint or power density. It involved creating a proof mass with an array of chambers or cavities that can be individually filled with liquid to alter the overall proof mass as well as center of gravity. The resonant frequency of a rectangular cantilever can then be altered by changing the location, density, and volume of the liquid-filled mass. The resolution can be enhanced by increasing the number of chambers, whereas the frequency tuning range can be increased by increasing the amount of liquid or density of the liquids used to fill the cavities. A piezoelectric cantilever with a 340 Hz initial resonant frequency was used as the testing device. Liquids with varying density (silicone oil, liquid sodium polytungstate, and Galinstan) were investigated. The resonant frequencies were measured experimentally by filling various cavities with these liquids to determine the tuning frequency range and resolution. The tuning ranges of the first resonant frequency mode for the device were 142–217 Hz, 108–217 Hz, and 78.4–217 Hz for silicone oil, liquid sodium polytungstate, and Galinstan, respectively, with a sub Hz resolution. 
    more » « less
  3. Packaging electronic devices within electronic textiles and fibrous substrates requires an understanding of how fibers interact with circuit components in different operating conditions. In this paper, we use microeletromechanical (MEMS) devices to put devices in electrical contact with fine wires. We characterize the electronic properties of MEMS-to-wire contacts and discuss general guidelines for optimizing the design of these grippers and potential MEMS-based circuits. We then demonstrate how these grippers can act as non-rigid circuit components that effectively transfer power to devices such as LEDs. Analysis shows that our grippers are suitable conductors (under 150 Ohms) under standard operating temperatures (25-100 deg. C) with potential for use as sensors for current overflow or temperature. Methods such as parylene deposition and silver epoxy to stabilize MEMS performance are briefly discussed and explored. 
    more » « less
  4. This paper presents the first demonstration and comparison of two identical oscillator circuits employing piezoelectric zinc oxide (ZnO) microelectromechanical systems (MEMS) resonators, implemented on conventional printed-circuit-board (PCB) and three-dimensional (3D)-printed acrylonitrile butadiene styrene (ABS) substrates. Both oscillators operate simultaneously at dual frequencies (260 MHz and 437 MHz) without the need for additional circuitry. The MEMS resonators, fabricated on silicon-on-insulator (SOI) wafers, exhibit high-quality factors (Q), ensuring superior phase noise performance. Experimental results indicate that the oscillator packaged using 3D-printed chip-carrier assembly achieves a 2–3 dB improvement in phase noise compared to the PCB-based oscillator, attributed to the ABS substrate’s lower dielectric loss and reduced parasitic effects at radio frequency (RF). Specifically, phase noise values between −84 and −77 dBc/Hz at 1 kHz offset and a noise floor of −163 dBc/Hz at far-from-carrier offset were achieved. Additionally, the 3D-printed ABS-based oscillator delivers notably higher output power (4.575 dBm at 260 MHz and 0.147 dBm at 437 MHz). To facilitate modular characterization, advanced packaging techniques leveraging precise 3D-printed encapsulation with sub-100 μm lateral interconnects were employed. These ensured robust packaging integrity without compromising oscillator performance. Furthermore, a comparison between two transistor technologies—a silicon germanium (SiGe) heterojunction bipolar transistor (HBT) and an enhancement-mode pseudomorphic high-electron-mobility transistor (E-pHEMT)—demonstrated that SiGe HBT transistors provide superior phase noise characteristics at close-to-carrier offset frequencies, with a significant 11 dB improvement observed at 1 kHz offset. These results highlight the promising potential of 3D-printed chip-carrier packaging techniques in high-performance MEMS oscillator applications. 
    more » « less
  5. Most lab-on-a-disc platforms use centrifugal force to pump liquids. In this work, we demonstrated a novel energy efficient non-centrifugal lab-on-a-disc nucleic acid testing device in which no liquid motion is involved. Streamlined DNA extraction, amplification, and real-time detection on a single microfluidic reagent disc are achieved by actuating the DNA-carrying magnetic beads against stationary reagent droplets. Using malaria spiked whole blood as a testing model, we demonstrated an excellent detection limit of 0.5 parasites/µl, sufficient for detecting asymptomatic malaria parasite carriers. 
    more » « less