Anionic states of benzonitrile are investigated by high-level electronic structure methods. The calculations using equation-of-motion coupled-cluster theory for electron-attached states confirm earlier conclusions drawn from the photodetachment experiments wherein the ground state of the anion is the valence 2 B 1 state, while the dipole bound state lies adiabatically ∼0.1 eV above. Inclusion of triple excitations and zero-point vibrational energies is important for recovering relative state correct ordering. The computed Franck–Condon factors and photodetachment cross-sections further confirm that the observed photodetachment spectrum originates from the valence anion. The valence anion is electronically bound at its equilibrium geometry, but it is metastable at the equilibrium geometry of the neutral. The dipole-bound state, which is the only bound anionic state at the neutral equilibrium geometry, may serve as a gateway state for capturing the electron. Thus, the emerging mechanistic picture entails electron capture via a dipole bound state, followed by non-adiabatic relaxation forming valence anions. 
                        more » 
                        « less   
                    
                            
                            Exploring the Light-Emitting Agents in Renilla Luciferases by an Effective QM/MM Approach
                        
                    
    
            Bioluminescence is a fascinating natural phenomenon, wherein organisms produce light through specific biochemical reactions. Among these organisms, Renilla luciferase (RLuc) derived from the sea pansy Renilla reniformis is notable for its blue light emission and has potential applications in bioluminescent tagging. Our study focuses on RLuc8, a variant of RLuc with eight amino acid substitutions. Recent studies have shown that the luminescent emitter coelenteramide can adopt multiple protonation states, which may be influenced by nearby residues at the enzyme's active site, demonstrating a complex interplay between protein structure and bioluminescence. Herein, using the quantum mechanical consistent force field method and the semimacroscopic protein dipole-Langevin dipole method with linear response approximation, we show that the phenolate state of coelenteramide in RLuc8 is the primary light-emitting species in agreement with experimental results. Our calculations also suggest that the proton transfer (PT) from neutral coelenteramide to Asp162 plays a crucial role in the bioluminescence process. Additionally, we reproduced the observed emission maximum for the amide anion in RLuc8-D120A and the pyrazine anion in the presence of a Na+ counterion in RLuc8-D162A, suggesting that these are the primary emitters. Furthermore, our calculations on the neutral emitter in the engineered AncFT-D160A enzyme, structurally akin to RLuc8-D162A but with a considerably blue-shifted emission peak, aligned with the observed data, possibly explaining the variance in emission peaks. Overall, this study demonstrates an effective approach to investigate chromophores' bimolecular states while incorporating the PT process in emission spectra calculations, contributing valuable insights for future studies of PT in photoproteins. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2142727
- PAR ID:
- 10586825
- Publisher / Repository:
- Journal of American Chemical Society
- Date Published:
- Journal Name:
- Journal of the American Chemical Society
- Volume:
- 146
- Issue:
- 20
- ISSN:
- 0002-7863
- Page Range / eLocation ID:
- 13875 to 13885
- Subject(s) / Keyword(s):
- Bioluminescence Chemical Calculations Ions Peptides And Proteins Pyrazine
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract The development of bioluminescence‐based tools has seen steady growth in the field of chemical biology over the past few decades ranging in uses from reporter genes to assay development and targeted imaging. More recently, coelenterazine‐utilizing luciferases such asGaussia,Renilla, and the engineered nano‐luciferases have been utilized due to their intense luminescence relative to firefly luciferin/luciferase. The emerging importance of these systems warrants investigations into the components that affect their light production. Previous work has reported that one marine luciferase, Gaussia, is potently inhibited by copper salt. The mechanism for inhibition was not elucidated but was hypothesized to occur via binding to the enzyme. In this study, we provide the first report of a group of nonhomologous marine luciferases also exhibiting marked decreases in light emission in the presence of copper (II). We investigate the mechanism of action behind this inhibition and demonstrate that the observed copper inhibition does not stem from a luciferase interaction but rather the chemical oxidation of imidazopyrazinone luciferins generating inert, dehydrated luciferins.more » « less
- 
            When combined with nanostructured substrates, two-dimensional semiconductors can be engineered with strain to tailor light–matter interactions on the nanoscale. Recently, room-temperature nanoscale exciton localization with controllable wrinkling in 1L-WSe2 was achieved using arrays of gold nanocones. Here, the characterization of quantum dot-like states and single-photon emitters in the 1L-WSe2/nanocone system is reported. The nanocones induce a wide range of strains, and as a result, a diverse ensemble of narrowband, potential single-photon emitters is observed. The distribution of emitter energies reveals that most reside in two spectrally isolated bands, leaving a less populated intermediate band that is spectrally isolated from the ensembles. The spectral isolation is advantageous for high-purity quantum light emitters, and anti-bunched emission from one of these states is confirmed up to 25 K. Although the spatial distribution of strain is expected to influence the orientation of the transition dipoles of the emitters, multimodal emission polarization anisotropy and atomic force microscopy reveal that the macroscopic orientation of the wrinkles is not a good predictor of dipole orientation. Finally, the emission is found to change with thermal cycling from 4 to 290 K and back to 4 K, highlighting the need to control factors such as temperature-induced strain to enhance the robustness of this quantum emitter platform. The initial characterization here shows that controlled nanowrinkles of 1L-WSe2 generate quantum light in addition to uncovering potential challenges that need to be addressed for their adoption into quantum photonic technologies.more » « less
- 
            Despite the impressive development of perovskite light-emitting diodes (PeLEDs), it is still challenging to achieve high-efficiency deep-blue PeLEDs using colloid perovskite quantum dots (PQDs). The efficiency of PQDs with a wavelength below 460 nm, which meets the requirements for deep-blue emission in the Telecommunication Union UHD television standard (ITU REC. 2020), lags far behind those of their sky-blue counterparts. To address this issue, a novel strategy of fast anion-exchange & cation-doping inter-promotion (FAECDIP) is proposed to achieve highly efficient deep-blue PQDs by introducing CaBr2 into the CsPbCl3 PQDs. Owing to the presence of Ca2+, the speed of ion exchange is increased, driven by the smaller cation, Ca2+, improving the preparation efficiency. Additionally, Ca2+ was doped on the surface of PQDs. Based on studies of fast anion-exchange and theoretical calculations, Ca2+ improves the optical performance by decreasing the number of traps and increasing the crystallinity of target PQDs, facilitating the stability of treated films and PeLEDs by enhancing the formation energy of halogen vacancies. Here, a high PLQY of 80.3 % CaBr2-induced CsPb(Cl/Br)3 deep-blue PQDs (~446 nm) was achieved. The correspondent PeLEDs (~447 nm) achieved a superior EQE of 5.88 %, which is the state-of-the-art among the reported deep-blue PeLEDs. Our strategy provides a potential route to achieve deep-blue PeLEDs, which differs from the previous tedious-complex methods.more » « less
- 
            Efficient transport and harvesting of excitation energy under low light conditions is an important process in nature and quantum technologies alike. Here we formulate a quantum optics perspective to excitation energy transport in configurations of two-level quantum emitters with a particular emphasis on efficiency and robustness against disorder. We study a periodic geometry of emitter rings with subwavelength spacing, where collective electronic states emerge due to near-field dipole–dipole interactions. The system gives rise to collective subradiant states that are particularly suited to excitation transport and are protected from energy disorder and radiative decoherence. Comparing ring geometries with other configurations shows that the former are more efficient in absorbing, transporting, and trapping incident light. Because our findings are agnostic as to the specific choice of quantum emitters, they indicate general design principles for quantum technologies with superior photon transport properties and may elucidate potential mechanisms resulting in the highly efficient energy transport efficiencies in natural light-harvesting systems.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    