skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Linear Cross-document Event Coreference Resolution with X-AMR
Event Coreference Resolution (ECR) as a pairwise mention classification task is expensive both for automated systems and manual annotations. The task`s quadratic difficulty is exacerbated when using Large Language Models (LLMs), making prompt engineering for ECR prohibitively costly. In this work, we propose a graphical representation of events, X-AMR, anchored around individual mentions using a cross-document version of Abstract Meaning Representation. We then linearize the ECR with a novel multi-hop coreference algorithm over the event graphs. The event graphs simplify ECR, making it a) LLM cost-effective, b) compositional and interpretable, and c) easily annotated. For a fair assessment, we first enrich an existing ECR benchmark dataset with these event graphs using an annotator-friendly tool we introduce. Then, we employ GPT-4, the newest LLM by OpenAI, for these annotations. Finally, using the ECR algorithm, we assess GPT-4 against humans and analyze its limitations. Through this research, we aim to advance the state-of-the-art for efficient ECR and shed light on the potential shortcomings of current LLMs at this task. Code and annotations: https://github.com/ahmeshaf/gpt_coref  more » « less
Award ID(s):
2019805
PAR ID:
10586867
Author(s) / Creator(s):
; ; ; ; ; ; ;
Editor(s):
Calzolari, N; Kan, M; Hoste, V; Lenci, A; Sakti, S; Xue, N
Publisher / Repository:
ELRA and ICCL
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Jiang, Jing; Reitter, David; Deng, Shumin (Ed.)
    This paper explores utilizing Large Language Models (LLMs) to perform Cross-Document Event Coreference Resolution (CDEC) annotations and evaluates how they fare against human annotators with different levels of training. Specifically, we formulate CDEC as a multi-category classification problem on pairs of events that are represented as decontextualized sentences, and compare the predictions of GPT-4 with the judgment of fully trained annotators and crowdworkers on the same data set. Our study indicates that GPT-4 with zero-shot learning outperformed crowd-workers by a large margin and exhibits a level of performance comparable to trained annotators. Upon closer analysis, GPT-4 also exhibits tendencies of being overly confident, and force annotation decisions even when such decisions are not warranted due to insufficient information. Our results have implications on how to perform complicated annotations such as CDEC in the age of LLMs, and show that the best way to acquire such annotations might be to combine the strengths of LLMs and trained human annotators in the annotation process, and using untrained or undertrained crowdworkers is no longer a viable option to acquire high-quality data to advance the state of the art for such problems. 
    more » « less
  2. Although Large Language Models (LLMs) succeed in human-guided conversations such as instruction following and question answering, the potential of LLM-guided conversations—where LLMs direct the discourse and steer the conversation’s objectives—remains largely untapped. In this study, we provide an exploration of the LLM-guided conversation paradigm. Specifically, we first characterize LLM-guided conversation into three fundamental properties: (i) Goal Navigation; (ii) Context Management; (iii) Empathetic Engagement, and propose GUIDELLM as a general framework for LLM-guided conversation. We then implement an autobiography interviewing environment as one of the demonstrations of GuideLLM, which is a common practice in Reminiscence Therapy. In this environment, various techniques are integrated with GUIDELLM to enhance the autonomy of LLMs, such as Verbalized Interview Protocol (VIP) and Memory Graph Extrapolation (MGE) for goal navigation, and therapy strategies for empathetic engagement. We compare GUIDELLM with baseline LLMs, such as GPT-4-turbo and GPT-4o, from the perspective of interviewing quality, conversation quality, and autobiography generation quality. Experimental results encompassing both LLM-as-a-judge evaluations and human subject experiments involving 45 participants indicate that GUIDELLM significantly outperforms baseline LLMs in the autobiography interviewing task. 
    more » « less
  3. Large language models (LLMs) are fast becoming ubiquitous and have shown impressive performance in various natural language processing (NLP) tasks. Annotating data for downstream applications is a resource-intensive task in NLP. Recently, the use of LLMs as a cost-effective data annotator for annotating data used to train other models or as an assistive tool has been explored. Yet, little is known regarding the societal implications of using LLMs for data annotation. In this work, focusing on hate speech detection, we investigate how using LLMs such as GPT-4 and Llama-3 for hate speech detection can lead to different performances for different text dialects and racial bias in online hate detection classifiers. We used LLMs to predict hate speech in seven hate speech datasets and trained classifiers on the LLM annotations of each dataset. Using tweets written in African-American English (AAE) and Standard American English (SAE), we show that classifiers trained on LLM annotations assign tweets written in AAE to negative classes (e.g., hate, offensive, abuse, racism, etc.) at a higher rate than tweets written in SAE and that the classifiers have a higher false positive rate towards AAE tweets. We explore the effect of incorporating dialect priming in the prompting techniques used in prediction, showing that introducing dialect increases the rate at which AAE tweets are assigned to negative classes. 
    more » « less
  4. Abstract ObjectiveExtracting social determinants of health (SDoHs) from medical notes depends heavily on labor-intensive annotations, which are typically task-specific, hampering reusability and limiting sharing. Here, we introduce SDoH-GPT, a novel framework leveraging few-shot learning large language models (LLMs) to automate the extraction of SDoH from unstructured text, aiming to improve both efficiency and generalizability. Materials and MethodsSDoH-GPT is a framework including the few-shot learning LLM methods to extract the SDoH from medical notes and the XGBoost classifiers which continue to classify SDoH using the annotations generated by the few-shot learning LLM methods as training datasets. The unique combination of the few-shot learning LLM methods with XGBoost utilizes the strength of LLMs as great few shot learners and the efficiency of XGBoost when the training dataset is sufficient. Therefore, SDoH-GPT can extract SDoH without relying on extensive medical annotations or costly human intervention. ResultsOur approach achieved tenfold and twentyfold reductions in time and cost, respectively, and superior consistency with human annotators measured by Cohen's kappa of up to 0.92. The innovative combination of LLM and XGBoost can ensure high accuracy and computational efficiency while consistently maintaining 0.90+ AUROC scores. DiscussionThis study has verified SDoH-GPT on three datasets and highlights the potential of leveraging LLM and XGBoost to revolutionize medical note classification, demonstrating its capability to achieve highly accurate classifications with significantly reduced time and cost. ConclusionThe key contribution of this study is the integration of LLM with XGBoost, which enables cost-effective and high quality annotations of SDoH. This research sets the stage for SDoH can be more accessible, scalable, and impactful in driving future healthcare solutions. 
    more » « less
  5. Exposing students to low-quality assessments such as multiple-choice questions (MCQs) and short answer questions (SAQs) is detrimental to their learning, making it essential to accurately evaluate these assessments. Existing evaluation methods are often challenging to scale and fail to consider their pedagogical value within course materials. Online crowds offer a scalable and cost-effective source of intelligence, but often lack necessary domain expertise. Advancements in Large Language Models (LLMs) offer automation and scalability, but may also lack precise domain knowledge. To explore these trade-offs, we compare the effectiveness and reliability of crowdsourced and LLM-based methods for assessing the quality of 30 MCQs and SAQs across six educational domains using two standardized evaluation rubrics. We analyzed the performance of 84 crowdworkers from Amazon's Mechanical Turk and Prolific, comparing their quality evaluations to those made by the three LLMs: GPT-4, Gemini 1.5 Pro, and Claude 3 Opus. We found that crowdworkers on Prolific consistently delivered the highest-quality assessments, and GPT-4 emerged as the most effective LLM for this task. Our study reveals that while traditional crowdsourced methods often yield more accurate assessments, LLMs can match this accuracy in specific evaluative criteria. These results provide evidence for a hybrid approach to educational content evaluation, integrating the scalability of AI with the nuanced judgment of humans. We offer feasibility considerations in using AI to supplement human judgment in educational assessment. 
    more » « less