skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Pluvial flood impacts and policyholder responses throughout the United States
Abstract Pluvial floods pose a significant threat to properties, yet comprehensive impact analysis is hindered by data limitations on pluvial inundation. To assess pluvial flood impacts, we leveraged U.S. flood insurance claims and policy records for a subset of properties outside 100-year floodplains, streamflow records, and nationwide precipitation data, enabling us to distinguish damage claims caused by pluvial floods over 1978–2021. Strikingly, 87.1% of the claims analyzed from this subset were due to pluvial floods. Utilizing these pluvial flood claims unveiled distinct regional patterns of pluvial impacts across the contiguous U.S. These patterns are informed by the relationship between claim frequency and precipitation within each region. Remarkably, despite the pervasiveness of impacts, many states are seeing declining uptake in pluvial flood insurance coverage. Our study highlights regions facing heightened pluvial flood risks and underscores the critical need for enhanced consideration of pluvial inundation within risk management frameworks.  more » « less
Award ID(s):
2053429
PAR ID:
10586886
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Nature
Date Published:
Journal Name:
npj Natural Hazards
Volume:
2
Issue:
1
ISSN:
2948-2100
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Flooding risk results from complex interactions between hydrological hazards (e.g., riverine inundation during periods of heavy rainfall), exposure, vulnerability (e.g., the potential for structural damage or loss of life), and resilience (how well we recover, learn from, and adapt to past floods). Building on recent coupled conceptualizations of these complex interactions, we characterize human–flood interactions (collective memory and risk-enduring attitude) at a more comprehensive scale than has been attempted to date across 50 US metropolitan statistical areas with a sociohydrologic (SH) model calibrated with accessible local data (historical records of annual peak streamflow, flood insurance loss claims, active insurance policy records, and population density). A cluster analysis on calibrated SH model parameter sets for metropolitan areas identified two dominant behaviors: 1) “risk-enduring” cities with lower flooding defenses and longer memory of past flood loss events and 2) “risk-averse” cities with higher flooding defenses and reduced memory of past flooding. These divergent behaviors correlated with differences in local stream flashiness indices (i.e., the frequency and rapidity of daily changes in streamflow), maximum dam heights, and the proportion of White to non-White residents in US metropolitan areas. Risk-averse cities tended to exist within regions characterized by flashier streamflow conditions, larger dams, and larger proportions of White residents. Our research supports the development of SH models in urban metropolitan areas and the design of risk management strategies that consider both demographically heterogeneous populations, changing flood defenses, and temporal changes in community risk perceptions and tolerance. 
    more » « less
  2. Abstract Analyzing flood events has been the focus of numerous studies across local, regional, and global scales, aiming to understand their magnitude, drivers, and spatiotemporal distributions. Traditionally, flood hazards are defined by analyzing the likelihood of flood drivers exceeding their respective thresholds. This approach relies on events around gauge locations with accessible records. The availability of reanalysis and satellite data sets now allows us to leverage data from multiple flood reporting agencies to examine various flood event types, including compound and non‐compound events, and their drivers. We analyzed three decades of flood events in the US Gulf Coast states, where compound flood events are common. We found that rainfall is the predominant driver, contributing to over 45% of reported floods classified as compound events. Fluvial and pluvial floods are more frequent and severe during tropical seasons, and especially during the Fall compared with other calendar seasons. 
    more » « less
  3. Accurately delineating both pluvial and fluvial flood risk is critical to protecting vulnerable populations in urban environments. Although there are currently models and frameworks to estimate stormwater runoff and predict urban flooding, there are often minimal observations to validate results due to the quick retreat of floodwaters from affected areas. In this research, we compare and contrast different methodologies for capturing flood extent in order to highlight the challenges inherent in current methods for urban flooding delineation. This research focuses on two Philadelphia neighborhoods, Manayunk and Eastwick, that face frequent flooding. Overall, Philadelphia, PA is a city with a large proportion of vulnerable populations and is plagued by flooding, with expectations that flood risk will increase as climate change progresses. An array of data, including remotely sensed satellite imagery after major flooding events, Federal Emergency Management Agency’s Special Flood Hazard Areas, First Street Foundation’s Flood Factor, road closures, National Flood Insurance Program claims, and community surveys, were compared for the study areas. Here we show how stakeholder surveys can illuminate the weight of firsthand and communal knowledge on local understandings of stormwater and flood risk. These surveys highlighted different impacts of flooding, depending on the most persistent flood type, pluvial or fluvial, in each area, not present in large datasets. Given the complexity of flooding, there is no single method to fully encompass the impacts on both human well-being and the environment. Through the co-creation of flood risk knowledge, community members are empowered and play a critical role in fostering resilience in their neighborhoods. Community stormwater knowledge is a powerful tool that can be used as a complement to hydrologic flood delineation techniques to overcome common limitations in urban landscapes. 
    more » « less
  4. Abstract Flooding is one of the most impactful weather‐related natural hazards. Numerical models that solve the two dimensional (2D) shallow water equations (SWE) represent the first‐principles approach to simulate all types of spatial flooding, such as pluvial, fluvial, and coastal flooding, and their compound dynamics. High spatial resolution (e.g., () m) is needed in 2D SWE simulations to capture flood dynamics accurately, resulting in formidable computational challenges. Thus, relatively coarser spatial resolutions are used for large‐scale simulations of flooding, which introduce uncertainties in the results. It is unclear how the uncertainty associated with the model resolution compares to the uncertainties in precipitation data sets and assumptions regarding boundary conditions when channelized flows interact with other water bodies. In this study, we compare these three sources of uncertainties in 2D SWE simulations for the 2017 Houston flooding event. Our results show that precipitation uncertainty and mesh resolution have more significant impacts on the simulated streamflow and inundation dynamics than the choice of the downstream boundary condition at the watershed outlet. We point out the viability to confine the uncertainty of coarsening mesh resolution by using the variable resolution mesh (VRM) which refines critical topographic features with far fewer grid cells. Specifically, in simulations with VRM, the simulated inundation depths over the refined region are comparable to that use the finest uniform mesh. This study contributes to understanding the challenges and pathways for applying 2D SWE models to improve the realism of flood simulations over large scales. 
    more » « less
  5. Abstract This paper develops the concept of flood problem framing to understand decision-makers’ priorities in flood risk management in the Los Angeles Metropolitan Region in California (LA Metro). Problem frames shape an individual’s preferences for particular management strategies and their future behaviors. While flooding is a complex, multifaceted problem, with multiple causes and multiple impacts, a decision-maker is most likely to manage only those dimensions of flooding about which they are aware or concerned. To evaluate flood decision-makers’ primary concerns related to flood exposure, vulnerability, and management in the LA Metro, we draw on focus groups with flood control districts, city planners, nonprofit organizations, and other flood-related decision-makers. We identify numerous concerns, including concerns about specific types of floods (e.g., fluvial vs pluvial) and impacts to diverse infrastructure and communities. Our analyses demonstrate that flood concerns aggregate into three problem frames: one concerned with large fluvial floods exacerbated by climate change and their housing, economic, and infrastructure impacts; one concerned with pluvial nuisance flooding, pollution, and historic underinvestment in communities; and one concerned with coastal and fluvial flooding’s ecosystem impacts. While each individual typically articulated concerns that overlapped with only one problem frame, each problem frame was discussed by numerous organization types, suggesting low barriers to cross-organizational coordination in flood planning and response. This paper also advances our understanding of flood risk perception in a region that does not face frequent large floods. Significance Statement This paper investigates the primary concerns that planners, flood managers, and other decision-makers have about flooding in Southern California. This is important because the way that decision-makers understand flooding shapes the way that they will plan for and respond to flood events. We find that some decision-makers are primarily concerned with large floods affecting large swaths of infrastructure and housing; others are concerned with frequent, small floods that mobilize pollution in low-income areas; and others are concerned with protecting coastal ecosystems during sea level rise. Our results also highlight key priorities for research and practice, including the need for flexible and accessible flood data and education about how to evacuate. 
    more » « less