skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: “Keep up the good work!”: Using Constraints in Zero Shot Prompting to Generate Supportive Teacher Responses
Educational dialogue systems have been used to support students and teachers for decades. Such systems rely on explicit pedagogically motivated dialogue rules. With the ease of integrating large language models (LLMs) into dialogue systems, applications have been arising that directly use model responses without the use of human-written rules, raising concerns about their use in classroom settings. Here, we explore how to constrain LLM outputs to generate appropriate and supportive teacher-like responses. We present results comparing the effectiveness of different constraint variations in a zero-shot prompting setting on a large mathematics classroom corpus. Generated outputs are evaluated with human annotation for Fluency, Relevance, Helpfulness, and Adherence to the provided constraints. Including all constraints in the prompt led to the highest values for Fluency and Helpfulness, and the second highest value for Relevance. The annotation results also demonstrate that the prompts that result in the highest adherence to constraints do not necessarily indicate higher perceived scores for Fluency, Relevance, or Helpfulness. In a direct comparison, all of the non-baseline LLM responses were ranked higher than the actual teacher responses in the corpus over 50% of the time.  more » « less
Award ID(s):
2019805
PAR ID:
10586894
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Association for Computational Linguistics
Date Published:
Page Range / eLocation ID:
121 to 138
Format(s):
Medium: X
Location:
Kyoto, Japan
Sponsoring Org:
National Science Foundation
More Like this
  1. Transcripts of teaching episodes can be effective tools to understand discourse patterns in classroom instruction. According to most educational experts, sustained classroom discourse is a critical component of equitable, engaging, and rich learning environments for students. This paper describes the TalkMoves dataset, composed of 567 human annotated K-12 mathematics lesson transcripts (including entire lessons or portions of lessons) derived from video recordings. The set of transcripts primarily includes in-person lessons with whole-class discussions and/or small group work, as well as some online lessons. All of the transcripts are human-transcribed, segmented by the speaker (teacher or student), and annotated at the sentence level for ten discursive moves based on accountable talk theory. In addition, the transcripts include utterance-level information in the form of dialogue act labels based on the Switchboard Dialog Act Corpus. The dataset can be used by educators, policymakers, and researchers to understand the nature of teacher and student discourse in K-12 math classrooms. Portions of this dataset have been used to develop the TalkMoves application, which provides teachers with automated, immediate, and actionable feedback about their mathematics instruction. 
    more » « less
  2. Aligning large language models (LLMs) to human preferences is a crucial step in building helpful and safe AI tools, which usually involve training on supervised datasets. Popular algorithms such as Direct Preference Optimization (DPO) rely on pairs of AI-generated responses ranked according to human annotation. The response pair annotation process might bring human bias. Building a correct preference dataset is the costly part of the alignment pipeline. To improve annotation efficiency and quality in the LLMs alignment, we propose REAL:Response Embedding-based Alignment for LLMs, a strategy for constructing a high-quality training dataset that focuses on acquiring the less ambiguous preference pairs for labeling out of a set of response candidates. Our selection process is based on the similarity of embedding responses independently of prompts, which guarantees the selection process in an off-policy setting, avoiding adaptively measuring the similarity during the training. Experimental results on real-world dataset SHP2 and synthetic HH-RLHF benchmarks indicate that choosing dissimilar response pairs enhances the direct alignment of LLMs while reducing inherited labeling errors. The model aligned with dissimilar response pairs obtained a better margin and win rate on the dialogue task. Our findings suggest that focusing on distinct pairs can reduce the label error and improve LLM alignment efficiency, saving up to 65% of annotators’ work. The code of the work can be found https://github.com/ honggen-zhang/REAL-Alignment. 
    more » « less
  3. Large Language Models (LLMs) have shown promise in educational applications, but challenges such as hallucinations, lack of contextual relevance, and limited personalization impede their practical adoption. To address these issues, my research introduces MerryQuery, an LLM-powered educational agent that integrates Retrieval-Augmented Generation (RAG), rule-based content control, and Reinforcement Learning from Human Feedback (RLHF). The system features a dynamic learning profile module for adaptive personalization and a multi-step verification framework that cross-checks responses against external sources to enhance trustworthiness. A functional prototype of MerryQuery is being piloted in a real-world classroom. Preliminary results demonstrate improved response reliability and student understanding. 
    more » « less
  4. Analyzing the quality of classroom talk is central to educational research and improvement efforts. In particular, the presence of authentic teacher questions, where answers are not predetermined by the teacher, helps constitute and serves as a marker of productive classroom discourse. Further, authentic questions can be cultivated to improve teaching effectiveness and consequently student achievement. Unfortunately, current methods to measure question authenticity do not scale because they rely on human observations or coding of teacher discourse. To address this challenge, we set out to use automatic speech recognition, natural language processing, and machine learning to train computers to detect authentic questions in real-world classrooms automatically. Our methods were iteratively refined using classroom audio and human coded observational data from two sources: (a) a large archival database of text transcripts of 451 observations from 112 classrooms; and (b) a newly collected sample of 132 high-quality audio recordings from 27 classrooms, obtained under technical constraints that anticipate large-scale automated data collection and analysis. Correlations between human coded and computer-coded authenticity at the classroom level were sufficiently high (r = .602 for archival transcripts and .687 for audio recordings) to provide a valuable complement to human coding in research efforts. 
    more » « less
  5. Conversations often adhere to well-understood social norms that vary across cultures. For example, while addressing work superiors by their first name is commonplace in the Western culture, it is rare in Asian cultures. Adherence or violation of such norms often dictates the tenor of conversations. Humans are able to navigate social situations requiring cultural awareness quite adeptly. However, it is a hard task for NLP models. In this paper, we tackle this problem by introducing a Cultural Context Schema for conversations. It comprises (1) conversational information such as emotions, dialogue acts, etc., and (2) cultural information such as social norms, violations, etc. We generate ∼110k social norm and violation descriptions for ∼23k conversations from Chinese culture using LLMs. We refine them using automated verification strategies which are evaluated against culturally aware human judgements. We organize these descriptions into meaningful structures we call Norm Concepts, using an interactive human-in-the-loop framework. We ground the norm concepts and the descriptions in conversations using symbolic annotation. Finally, we use the obtained dataset for downstream tasks such as emotion, sentiment, and dialogue act detection. We show that it significantly improves the empirical performance. 
    more » « less