skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 1, 2026

Title: Fourier optimization and Montgomery’s pair correlation conjecture
Assuming the Riemann hypothesis, we improve the current upper and lower bounds for the average value of Montgomery’s function F(a,T) over long intervals by means of a Fourier optimization framework. The function F(a,T) is often used to study the pair correlation of the non-trivial zeros of the Riemann zeta-function. Two ideas play a central role in our approach: (i) the introduction of new averaging mechanisms in our conceptual framework and (ii) the full use of the class of test functions introduced by Cohn and Elkies for the sphere packing bounds, going beyond the usual class of bandlimited functions. We conclude that such an average value, that is conjectured to be 1, lies between 0.9303 and 1.3208. Our Fourier optimization framework also yields an improvement on the current bounds for the analogous problem concerning the non-trivial zeros in the family of Dirichlet L-functions.  more » « less
Award ID(s):
2401461 2101912
PAR ID:
10586898
Author(s) / Creator(s):
; ;
Publisher / Repository:
American Mathematical Society
Date Published:
Journal Name:
Mathematics of Computation
Volume:
94
Issue:
351
ISSN:
0025-5718
Page Range / eLocation ID:
409-424
Subject(s) / Keyword(s):
Riemann zeta-function pair correlation conjecture Riemann hypothesis Fourier optimization
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We study three integrals related to the celebrated pair correlation conjecture of H. L. Montgomery. The first is the integral of Montgomery’s function F ⁢ ( α , T ) {F(\alpha,T)} in bounded intervals, the second is an integral introduced by Selberg related to estimating the variance of primes in short intervals, and the last is the second moment of the logarithmic derivative of the Riemann zeta-function near the critical line. The conjectured asymptotic for any of these three integrals is equivalent to Montgomery’s pair correlation conjecture. Assuming the Riemann hypothesis, we substantially improve the known upper and lower bounds for these integrals by introducing new connections to certain extremal problems in Fourier analysis. In an appendix, we study the intriguing problem of establishing the sharp form of an embedding between two Hilbert spaces of entire functions naturally connected to Montgomery’s pair correlation conjecture. 
    more » « less
  2. Lysyanskaya, Anna; Handschuh, Helena (Ed.)
    We study the black-box function inversion problem, which is the problem of finding x[N] such that f(x)=y, given as input some challenge point y in the image of a function f:[N][N], using T oracle queries to f and preprocessed advice 01S depending on f. We prove a number of new results about this problem, as follows. 1. We show an algorithm that works for any T and S satisfying TS2maxST=(N3) . In the important setting when ST, this improves on the celebrated algorithm of Fiat and Naor [STOC, 1991], which requires TS3N3. E.g., Fiat and Naor's algorithm is only non-trivial for SN23 , while our algorithm gives a non-trivial tradeoff for any SN12 . (Our algorithm and analysis are quite simple. As a consequence of this, we also give a self-contained and simple proof of Fiat and Naor's original result, with certain optimizations left out for simplicity.) 2. We show a non-adaptive algorithm (i.e., an algorithm whose ith query xi is chosen based entirely on and y, and not on the f(x1)f(xi−1)) that works for any T and S satisfying S=(Nlog(NT)) giving the first non-trivial non-adaptive algorithm for this problem. E.g., setting T=Npolylog(N) gives S=(NloglogN). This answers a question due to Corrigan-Gibbs and Kogan [TCC, 2019], who asked whether it was possible for a non-adaptive algorithm to work with parameters T and S satisfying T+SlogNo(N) . We also observe that our non-adaptive algorithm is what we call a guess-and-check algorithm, that is, it is non-adaptive and its final output is always one of the oracle queries x1xT. For guess-and-check algorithms, we prove a matching lower bound, therefore completely characterizing the achievable parameters (ST) for this natural class of algorithms. (Corrigan-Gibbs and Kogan showed that any such lower bound for arbitrary non-adaptive algorithms would imply new circuit lower bounds.) 3. We show equivalence between function inversion and a natural decision version of the problem in both the worst case and the average case, and similarly for functions f:[N][M] with different ranges. All of the above results are most naturally described in a model with shared randomness (i.e., random coins shared between the preprocessing algorithm and the online algorithm). However, as an additional contribution, we show (using a technique from communication complexity due to Newman [IPL, 1991]) how to generically convert any algorithm that uses shared randomness into one that does not. 
    more » « less
  3. Given a function f on (F_2_^n, we study the following problem. What is the largest affine subspace U such that when restricted to U, all the non-trivial Fourier coefficients of f are very small? For the natural class of bounded Fourier degree d functions f : (F_2)^n → [−1, 1], we show that there exists an affine subspace of dimension at least ˜Ω (n^(1/d!) k^(−2)), wherein all of f ’s nontrivial Fourier coefficients become smaller than 2^(−k) . To complement this result, we show the existence of degree d functions with coefficients larger than 2^(−d log n) when restricted to any affine subspace of dimension larger than Ω(dn^(1/(d−1))). In addition, we give explicit examples of functions with analogous but weaker properties. Along the way, we provide multiple characterizations of the Fourier coefficients of functions restricted to subspaces of (F_2)^n that may be useful in other contexts. Finally, we highlight applications and connections of our results to parity kill number and affine dispersers. 
    more » « less
  4. For each $$t\in \mathbb{R}$$ , we define the entire function $$\begin{eqnarray}H_{t}(z):=\int _{0}^{\infty }e^{tu^{2}}\unicode[STIX]{x1D6F7}(u)\cos (zu)\,du,\end{eqnarray}$$ where $$\unicode[STIX]{x1D6F7}$$ is the super-exponentially decaying function $$\begin{eqnarray}\unicode[STIX]{x1D6F7}(u):=\mathop{\sum }_{n=1}^{\infty }(2\unicode[STIX]{x1D70B}^{2}n^{4}e^{9u}-3\unicode[STIX]{x1D70B}n^{2}e^{5u})\exp (-\unicode[STIX]{x1D70B}n^{2}e^{4u}).\end{eqnarray}$$ Newman showed that there exists a finite constant $$\unicode[STIX]{x1D6EC}$$ (the de Bruijn–Newman constant ) such that the zeros of $$H_{t}$$ are all real precisely when $$t\geqslant \unicode[STIX]{x1D6EC}$$ . The Riemann hypothesis is equivalent to the assertion $$\unicode[STIX]{x1D6EC}\leqslant 0$$ , and Newman conjectured the complementary bound $$\unicode[STIX]{x1D6EC}\geqslant 0$$ . In this paper, we establish Newman’s conjecture. The argument proceeds by assuming for contradiction that $$\unicode[STIX]{x1D6EC}<0$$ and then analyzing the dynamics of zeros of $$H_{t}$$ (building on the work of Csordas, Smith and Varga) to obtain increasingly strong control on the zeros of $$H_{t}$$ in the range $$\unicode[STIX]{x1D6EC} 
    more » « less
  5. Abstract Assuming the Riemann hypothesis, we prove estimates for the variance of the real and imaginary part of the logarithm of the Riemann zeta function in short intervals. We give three different formulations of these results. Assuming a conjecture of Chan for how often gaps between zeros can be close to a fixed non‐zero value, we prove a conjecture of Berry (1988) for the number variance of zeta zeros in the non‐universal regime. In this range, Gaussian unitary ensemble statistics do not describe the distribution of the zeros. We also calculate lower order terms in the second moment of the logarithm of the modulus of the Riemann zeta function on the critical line. Assuming Montgomery's pair correlation conjecture, this establishes a special case of a conjecture of Keating and Snaith (2000). 
    more » « less