Assuming the Riemann hypothesis, we improve the current upper and lower bounds for the average value of Montgomery’s function F(a,T) over long intervals by means of a Fourier optimization framework. The function F(a,T) is often used to study the pair correlation of the non-trivial zeros of the Riemann zeta-function. Two ideas play a central role in our approach: (i) the introduction of new averaging mechanisms in our conceptual framework and (ii) the full use of the class of test functions introduced by Cohn and Elkies for the sphere packing bounds, going beyond the usual class of bandlimited functions. We conclude that such an average value, that is conjectured to be 1, lies between 0.9303 and 1.3208. Our Fourier optimization framework also yields an improvement on the current bounds for the analogous problem concerning the non-trivial zeros in the family of Dirichlet L-functions. 
                        more » 
                        « less   
                    
                            
                            On Montgomery’s pair correlation conjecture: A tale of three integrals
                        
                    
    
            Abstract We study three integrals related to the celebrated pair correlation conjecture of H. L. Montgomery. The first is the integral of Montgomery’s function F  ( α , T ) {F(\alpha,T)} in bounded intervals, the second is an integral introduced by Selberg related to estimating the variance of primes in short intervals, and the last is the second moment of the logarithmic derivative of the Riemann zeta-function near the critical line. The conjectured asymptotic for any of these three integrals is equivalent to Montgomery’s pair correlation conjecture. Assuming the Riemann hypothesis, we substantially improve the known upper and lower bounds for these integrals by introducing new connections to certain extremal problems in Fourier analysis. In an appendix, we study the intriguing problem of establishing the sharp form of an embedding between two Hilbert spaces of entire functions naturally connected to Montgomery’s pair correlation conjecture. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10325775
- Date Published:
- Journal Name:
- Journal für die reine und angewandte Mathematik (Crelles Journal)
- Volume:
- 0
- Issue:
- 0
- ISSN:
- 0075-4102
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Assuming the Riemann hypothesis, we prove estimates for the variance of the real and imaginary part of the logarithm of the Riemann zeta function in short intervals. We give three different formulations of these results. Assuming a conjecture of Chan for how often gaps between zeros can be close to a fixed non‐zero value, we prove a conjecture of Berry (1988) for the number variance of zeta zeros in the non‐universal regime. In this range, Gaussian unitary ensemble statistics do not describe the distribution of the zeros. We also calculate lower order terms in the second moment of the logarithm of the modulus of the Riemann zeta function on the critical line. Assuming Montgomery's pair correlation conjecture, this establishes a special case of a conjecture of Keating and Snaith (2000).more » « less
- 
            Assuming the Riemann Hypothesis (RH), Montgomery proved a theorem concerning pair correlation of zeros of the Riemann zeta-function. One consequence of this theorem is that, assuming RH, at least 67.9% of the nontrivial zeros are simple. Here we obtain an unconditional form of Montgomery’s theorem and show how to apply it to prove the following result on simple zeros: If all the zeros ρ=β+iγ of the Riemann zeta-function such that T3/8<γ≤T satisfy ∣∣β−1/2∣∣<1/(2logT), then, as T tends to infinity, at least 61.7% of these zeros are simple. The method of proof neither requires nor provides any information on whether any of these zeros are or are not on the critical line where β=1/2. We also obtain the same result under the weaker assumption of a strong zero-density hypothesis.more » « less
- 
            For each $$t\in \mathbb{R}$$ , we define the entire function $$\begin{eqnarray}H_{t}(z):=\int _{0}^{\infty }e^{tu^{2}}\unicode[STIX]{x1D6F7}(u)\cos (zu)\,du,\end{eqnarray}$$ where $$\unicode[STIX]{x1D6F7}$$ is the super-exponentially decaying function $$\begin{eqnarray}\unicode[STIX]{x1D6F7}(u):=\mathop{\sum }_{n=1}^{\infty }(2\unicode[STIX]{x1D70B}^{2}n^{4}e^{9u}-3\unicode[STIX]{x1D70B}n^{2}e^{5u})\exp (-\unicode[STIX]{x1D70B}n^{2}e^{4u}).\end{eqnarray}$$ Newman showed that there exists a finite constant $$\unicode[STIX]{x1D6EC}$$ (the de Bruijn–Newman constant ) such that the zeros of $$H_{t}$$ are all real precisely when $$t\geqslant \unicode[STIX]{x1D6EC}$$ . The Riemann hypothesis is equivalent to the assertion $$\unicode[STIX]{x1D6EC}\leqslant 0$$ , and Newman conjectured the complementary bound $$\unicode[STIX]{x1D6EC}\geqslant 0$$ . In this paper, we establish Newman’s conjecture. The argument proceeds by assuming for contradiction that $$\unicode[STIX]{x1D6EC}<0$$ and then analyzing the dynamics of zeros of $$H_{t}$$ (building on the work of Csordas, Smith and Varga) to obtain increasingly strong control on the zeros of $$H_{t}$$ in the range $$\unicode[STIX]{x1D6EC}more » « less
- 
            Abstract For $$V\sim \alpha \log \log T$$ with $$0<\alpha <2$$, we prove $$\begin{align*} & \frac{1}{T}\textrm{meas}\{t\in [T,2T]: \log|\zeta(1/2+ \textrm{i} t)|>V\}\ll \frac{1}{\sqrt{\log\log T}} e^{-V^{2}/\log\log T}. \end{align*}$$This improves prior results of Soundararajan and of Harper on the large deviations of Selberg’s Central Limit Theorem in that range, without the use of the Riemann hypothesis. The result implies the sharp upper bound for the fractional moments of the Riemann zeta function proved by Heap, Radziwiłł, and Soundararajan. It also shows a new upper bound for the maximum of the zeta function on short intervals of length $$(\log T)^{\theta }$$, $$0<\theta <3$$, that is expected to be sharp for $$\theta> 0$$. Finally, it yields a sharp upper bound (to order one) for the moments on short intervals, below and above the freezing transition. The proof is an adaptation of the recursive scheme introduced by Bourgade, Radziwiłł, and one of the authors to prove fine asymptotics for the maximum on intervals of length $$1$$.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    