skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 18, 2026

Title: Directed Assembly of Magnetic Colloidal Rods in an External Field
In fabricating new colloid-based materials via bottom-up design, particle–particle interactions are engineered to encourage the formation of the desired assemblies. One way to do this is to apply an external field, which orients magnetically polarized particles in the field direction. External fields have the advantage that they can be programmed to change in time (e.g., field rotation or toggling), tunably shifting the system away from equilibrium. Here, we apply a model for ferromagnetic colloidal rods that simulates their phase behavior in the presence of an external magnetic field with constant strength and direction. An annealing process slowly reduces the temperature during molecular dynamics simulations to estimate the system’s equilibrium configuration in the ground state when the magnetic interactions between colloidal rods dominate the thermal forces. Numerous annealing simulations are performed at various particle densities and external field strengths. In the absence of an external field, the magnetic rods assemble into antiparallel configurations. When the strength of the external field is sufficiently strong, the magnetic rods are forced to orient in the direction of the field and therefore form head-to-tail structures. The formation of a head-to-tail state is associated with a net magnetic moment that results from the collective alignment of all magnetic particles in the field direction. Furthermore, when systems of magnetic rods assemble into a head-to-tail state, they occupy more space than they do in a phase in which most rods are assembled into antiparallel configurations. Phase diagrams predict that the magnetic properties of systems of rod-like magnetic particles can switch between magnetic and nonmagnetic states by tuning not only the external field strength but also the particle density.  more » « less
Award ID(s):
1935248
PAR ID:
10586903
Author(s) / Creator(s):
;
Corporate Creator(s):
Editor(s):
Walker, Gilbert C
Publisher / Repository:
ACS Publications
Date Published:
Journal Name:
Langmuir
Edition / Version:
1
Volume:
41
Issue:
6
ISSN:
0743-7463
Page Range / eLocation ID:
3938 to 3950
Subject(s) / Keyword(s):
colloidal particles self assembly magnetic field discontinuous molecular dynamics simulation
Format(s):
Medium: X Size: 5.;2MB Other: PDF
Size(s):
5. 2MB
Sponsoring Org:
National Science Foundation
More Like this
  1. Gagliardi, Laura (Ed.)
    Colloidal particles with anisotropic geometries and interactions display rich phase behavior and hence have the potential to serve as the basis of functional materials, which can tunably and reversibly self-assemble into different configurations. External fields are one design parameter that can be used to manipulate how systems of colloidal particles assemble with one another. One challenge in designing new materials using anisotropic colloidal particles is understanding how an individual particle’s various anisotropic features, like geometry, affect their overall self-assembly. Here, we present the results of simulation studies that explore the self-assembly of 2D colloidal squares with offset magnetic dipoles in the presence of an external field. Annealing simulations are used to measure the equilibrium-phase behavior of systems of these particles in the ground state, when the magnetic interactions dominate over the thermal forces of the system. We find that the magnetic properties of these systems are strongly influenced by the relative number of squares with opposite “handedness”, or chirality, that are present within the system. Systems of squares that contain equal numbers of either chirality are extremely responsive to the external field; a relatively weak external field is required to magnetize them. In contrast, systems that contain only one chirality of squares are significantly less responsive to the external field; a significantly stronger external field is required to elicit the same magnetic response. Ultimately, the differing macroscopic magnetic properties of these systems are related to their microscopic self- assembly in an external field. Simulation snapshots and ground state phase diagrams illustrate how the absence of opposite chirality squares prevents systems of these particles from leaving an energetically favorable antiparallel configuration in the presence of an external field. When opposite chirality squares are present, these magnetic particles assemble into a head-to-tail configuration, therefore inducing a magnetic state 
    more » « less
  2. Phase separation processes are widely utilized to assemble complex fluids into novel materials. These separation processes can be thermodynamically driven due to changes in concentration, pressure, or temperature. Phase separation can also be induced with external stimuli, such as magnetic fields, resulting in novel nonequilibrium systems. However, how external stimuli influence the transition pathways between phases has not been explored in detail. Here, we describe the phase separation dynamics of superparamagnetic colloids in time-varying magnetic fields. An initially homogeneous colloidal suspension can transition from a continuous colloidal phase with voids to discrete colloidal clusters, through a bicontinuous phase formed via spinodal decomposition. The type of transition depends on the particle concentration and magnitude of the applied magnetic field. The spatiotemporal evolution of the microstructure during the nucleation and growth period is quantified by analyzing the morphology using Minkowski functionals. The characteristic length of the colloidal systems was determined to correlate with system variables such as magnetic field strength, particle concentration, and time in a power-law scaling relationship. Understanding the interplay between particle concentration and applied magnetic field allows for better control of the phases observed in these magnetically tunable colloidal systems. 
    more » « less
  3. Colloids can be used either as model systems for directed assembly or as the necessary building blocks for making functional materials. Previous work primarily focused on assembling colloids under a single external field, where controlling particle−particle interactions is limited. This work presents results under a combination of electric and magnetic fields. When these two fields are orthogonally applied, we can independently tune the magnitude and direction of the dipolar attraction and repulsion between the particles. As a result, we obtain well-aligned, highly dense, but individually separated linear chains at intermediate particle concentrations. Both the inter- and intrachain spacings can be tuned by adjusting the particle concentration and relative strengths of both fields. At high particle concentrations and by tuning the electric field frequency, the individual microspheres can assemble into colloidal oligomers such as trimers, tetramers, heptamers, and nonamers in response to the electric field due to the synergy between dipolar and electrohydrodynamic interactions. These oligomers, in turn, serve as building blocks for making hierarchical structures with finer architectures upon superimposing a one-dimensional (1D) magnetic field. In addition to experiments, Monte Carlo (MC) simulations have been performed on colloids confined near the electrode, interacting through a Stockmayer-like potential. They faithfully reproduce key observations in the experiments. Our work demonstrates the potential of using orthogonal electric and magnetic fields to assemble diversified types of highly aligned structures for applications in high-strength composites, optical materials, or structured battery electrodes. 
    more » « less
  4. Morphological and magnetic anisotropy can be combined in colloidal assembly to create unconventional secondary structures. We show here that magnetite nanorods interact along a critical angle, depending on their aspect ratios and assemble into body-centered tetragonal colloidal crystals. Under a magnetic field, size-dependent attractive and repulsive domains develop on the ends and center of the nanorods, respectively. Our joint experiment-computational multiscale study demonstrates the presence of a critical angle in the attractive domain, which defines the equilibrium bonding states of interacting rods and leads to the formation of non–close-packed yet hard-contact tetragonal crystals. Small-angle x-ray scattering measurement attributes the perfect tetragonal phase to the slow assembly kinetics. The crystals exhibit brilliant structural colors, which can be actively tuned by changing the magnetic field direction. These highly ordered frameworks and well-defined three-dimensional nanochannels may offer new opportunities for manipulating nanoscale chemical transformation, mass transportation, and wave propagation. 
    more » « less
  5. We report a model to predict equilibrium density profiles for different shaped colloids in two-dimensional liquid, nematic, and crystal states in nonuniform external fields. The model predictions are validated against Monte Carlo simulations and optical microscopy experiments for circular, square, elliptical, and rectangular colloidal particles in AC electric fields between parallel electrodes. The model to predict the densities of all states of different shaped particles is based on a balance of the local quasi-2D osmotic pressure against a compressive force due to induced dipole-field interactions. The osmotic force balance employs equations of state for hard ellipse liquid, nematic, and crystal state osmotic pressures, which are extended to additional particle shapes. The resulting simple analytical model is shown to accurately predict particle densities within liquid, liquid crystal, and crystal states for a broad range of particle shapes, system sizes, and field conditions. These findings provide a basis for quantitative design and control of fields to assemble and reconfigure colloidal particles in interfacial materials and devices. 
    more » « less