skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 1, 2026

Title: Resonant shattering flares as asteroseismic tests of chiral effective field theory
Chiral effective field theory ( χ EFT ) has proved to be a powerful microscopic framework for predicting the properties of neutron-rich nuclear matter with quantified theoretical uncertainties up to about twice the nuclear saturation density. Tests of χ EFT predictions are typically performed at low densities using nuclear experiments, with neutron star (NS) constraints only being considered at high densities. In this work, we discuss how asteroseismic quasinormal modes within NSs could be used to constrain specific matter properties at particular densities not just the integrated quantities to which bulk NS observables are sensitive. We focus on the crust-core interface mode, showing that measuring this mode's frequency would provide a meaningful test of χ EFT at densities around half the saturation density. Conversely, we use nuclear matter properties predicted by χ EFT to estimate that this mode's frequency is around 185 ± 50 Hz . Asteroseismic observables such as resonant phase shifts in gravitational-wave signals and multimessenger resonant shattering flare timings, therefore, have the potential to provide useful tests of χ EFT . Published by the American Physical Society2025  more » « less
Award ID(s):
2339043 2209536 2209318
PAR ID:
10587042
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
American Physical Society
Date Published:
Journal Name:
Physical Review C
Volume:
111
Issue:
1
ISSN:
2469-9985
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We report on a blinded search for dark matter with single- and few-electron signals in the first science run of XENONnT relying on a novel detector response framework that is physics model dependent. We derive 90% confidence upper limits for dark matter-electron interactions. Heavy and light mediator cases are considered for the standard halo model and dark matter up-scattered in the Sun. We set stringent new limits on dark matter-electron scattering via a heavy mediator with a mass within 10 20 MeV / c 2 and electron absorption of axionlike particles and dark photons for m χ below 0.03 keV / c 2 . Published by the American Physical Society2025 
    more » « less
  2. High-intensity neutron beams, such as those available at the European Spallation Source (ESS), provide new opportunities for fundamental discoveries. Here, we discuss a novel Ramsey neutron-beam experiment to search for ultralight axion dark matter through its coupling to neutron spins, which would cause the neutron spins to rotate about the velocity of the neutrons relative to the dark matter halo. We estimate that experiments at the HIBEAM beamline with a 50 m free flight path at the ESS can improve the sensitivity to the axion-neutron coupling compared to the current best laboratory limits by up to 2–3 orders of magnitude over the axion mass range 10 22 eV 10 16 eV . Published by the American Physical Society2024 
    more » « less
  3. We search for dark matter (DM) with a mass [ 3 , 12 ] GeV / c 2 using an exposure of 3.51 tonne year with the XENONnT experiment. We consider spin-independent DM-nucleon interactions mediated by a heavy or light mediator, spin-dependent DM-neutron interactions, momentum-dependent DM scattering, and mirror DM. Using a lowered energy threshold compared to the previous weakly interacting massive particle search, a blind analysis of [0.5, 5.0] keV nuclear recoil events reveals no significant signal excess over the background. XENONnT excludes spin-independent DM-nucleon cross sections > 2.5 × 10 45 cm 2 at 90% confidence level for 6 GeV / c 2 DM. In the considered mass range, the DM sensitivity approaches the “neutrino fog,” the limitation where neutrinos produce a signal that is indistinguishable from that of light DM-xenon nucleus scattering. Published by the American Physical Society2025 
    more » « less
  4. The nuclear two-photon or double-gamma ( 2 γ ) decay is a second-order electromagnetic process whereby a nucleus in an excited state emits two gamma rays simultaneously. To be able to directly measure the 2 γ decay rate in the low-energy regime below the electron-positron pair-creation threshold, we combined the isochronous mode of a storage ring with Schottky resonant cavities. The newly developed technique can be applied to isomers with excitation energies down to 100 keV and half-lives as short as 10 ms . The half-life for the 2 γ decay of the first-excited 0 + state in bare Ge 72 ions was determined to be 23.9(6) ms, which strongly deviates from expectations. Published by the American Physical Society2024 
    more » « less
  5. We present the first measurement of nuclear recoils from solar B 8 neutrinos via coherent elastic neutrino-nucleus scattering with the XENONnT dark matter experiment. The central detector of XENONnT is a low-background, two-phase time projection chamber with a 5.9 t sensitive liquid xenon target. A blind analysis with an exposure of 3.51 t × yr resulted in 37 observed events above 0.5 keV, with ( 26.4 1.3 + 1.4 ) events expected from backgrounds. The background-only hypothesis is rejected with a statistical significance of 2.73 σ . The measured B 8 solar neutrino flux of ( 4.7 2.3 + 3.6 ) × 10 6 cm 2 s 1 is consistent with results from the Sudbury Neutrino Observatory. The measured neutrino flux-weighted CE ν NS cross section on Xe of ( 1.1 0.5 + 0.8 ) × 10 39 cm 2 is consistent with the Standard Model prediction. This is the first direct measurement of nuclear recoils from solar neutrinos with a dark matter detector. Published by the American Physical Society2024 
    more » « less