skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 1, 2026

Title: Neural transition system abstraction for neural network dynamical system models and its application to Computational Tree Logic verification
Award ID(s):
2143351 2223035 2331938
PAR ID:
10587072
Author(s) / Creator(s):
; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Neural Networks
Volume:
186
Issue:
C
ISSN:
0893-6080
Page Range / eLocation ID:
107261
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Many companies provide neural network prediction services to users for a wide range of applications. However, current prediction systems compromise one party's privacy: either the user has to send sensitive inputs to the service provider for classification, or the service provider must store its proprietary neural networks on the user's device. The former harms the personal privacy of the user, while the latter reveals the service provider's proprietary model. We design, implement, and evaluate Delphi, a secure prediction system that allows two parties to execute neural network inference without revealing either party's data. Delphi approaches the problem by simultaneously co-designing cryptography and machine learning. We first design a hybrid cryptographic protocol that improves upon the communication and computation costs over prior work. Second, we develop a planner that automatically generates neural network architecture configurations that navigate the performance-accuracy trade-offs of our hybrid protocol. Together, these techniques allow us to achieve a 22x improvement in online prediction latency compared to the state-of-the-art prior work. 
    more » « less
  2. In recent years, robotic technologies, e.g. drones or autonomous cars have been applied to the agricultural sectors to improve the efficiency of typical agricultural operations. Some agricultural tasks that are ideal for robotic automation are yield estimation and robotic harvesting. For these applications, an accurate and reliable image-based detection system is critically important. In this work, we present a low-cost strawberry detection system based on convolutional neural networks. Ablation studies are presented to validate the choice of hyper- parameters, framework, and network structure. Additional modifications to both the training data and network structure that improve precision and execution speed, e.g., input compression, image tiling, color masking, and network compression, are discussed. Finally, we present a final network implementation on a Raspberry Pi 3B that demonstrates a detection speed of 1.63 frames per second and an average precision of 0.842. 
    more » « less