Abstract Terrestrial, aquatic, and marine ecosystems regulate climate at local to global scales through exchanges of energy and matter with the atmosphere and assist with climate change mitigation through nature‐based climate solutions. Climate science is no longer a study of the physics of the atmosphere and oceans, but also the ecology of the biosphere. This is the promise of Earth system science: to transcend academic disciplines to enable study of the interacting physics, chemistry, and biology of the planet. However, long‐standing tension in protecting, restoring, and managing forest ecosystems to purposely improve climate evidences the difficulties of interdisciplinary science. For four centuries, forest management for climate betterment was argued, legislated, and ultimately dismissed, when nineteenth century atmospheric scientists narrowly defined climate science to the exclusion of ecology. Today's Earth system science, with its roots in global models of climate, unfolds in similar ways to the past. With Earth system models, geoscientists are again defining the ecology of the Earth system. Here we reframe Earth system science so that the biosphere and its ecology are equally integrated with the fluid Earth to enable Earth system prediction for planetary stewardship. Central to this is the need to overcome an intellectual heritage to the models that elevates geoscience and marginalizes ecology and local land knowledge. The call for kilometer‐scale atmospheric and ocean models, without concomitant scientific and computational investment in the land and biosphere, perpetuates the geophysical view of Earth and will not fully provide the comprehensive actionable information needed for a changing climate. 
                        more » 
                        « less   
                    
                            
                            Towards neural Earth system modelling by integrating artificial intelligence in Earth system science
                        
                    - Award ID(s):
- 1749261
- PAR ID:
- 10327448
- Date Published:
- Journal Name:
- Nature Machine Intelligence
- Volume:
- 3
- Issue:
- 8
- ISSN:
- 2522-5839
- Page Range / eLocation ID:
- 667 to 674
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            null (Ed.)Plastic contamination of the environment is a global problem whose magnitude justifies the consideration of plastics as emergent geomaterials with chemistries not previously seen in Earth’s history. At the elemental level, plastics are predominantly carbon. The comparison of plastic stocks and fluxes to those of carbon reveals that the quantities of plastics present in some ecosystems rival the quantity of natural organic carbon and suggests that geochemists should now consider plastics in their analyses. Acknowledging plastics as geomaterials and adopting geochemical insights and methods can expedite our understanding of plastics in the Earth system. Plastics also can be used as global-scale tracers to advance Earth system science.more » « less
- 
            Abstract The stability and resilience of the Earth system and human well-being are inseparably linked1–3, yet their interdependencies are generally under-recognized; consequently, they are often treated independently4,5. Here, we use modelling and literature assessment to quantify safe and just Earth system boundaries (ESBs) for climate, the biosphere, water and nutrient cycles, and aerosols at global and subglobal scales. We propose ESBs for maintaining the resilience and stability of the Earth system (safe ESBs) and minimizing exposure to significant harm to humans from Earth system change (a necessary but not sufficient condition for justice)4. The stricter of the safe or just boundaries sets the integrated safe and just ESB. Our findings show that justice considerations constrain the integrated ESBs more than safety considerations for climate and atmospheric aerosol loading. Seven of eight globally quantified safe and just ESBs and at least two regional safe and just ESBs in over half of global land area are already exceeded. We propose that our assessment provides a quantitative foundation for safeguarding the global commons for all people now and into the future.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    