Abstract We study the volume growth of metric balls as a function of the radius in discrete spaces and focus on the relationship between volume growth and discrete curvature. We improve volume growth bounds under a lower bound on the so-called Ollivier curvature and discuss similar results under other types of discrete Ricci curvature. Following recent work in the continuous setting of Riemannian manifolds (by the 1st author), we then bound the eigenvalues of the Laplacian of a graph under bounds on the volume growth. In particular, $$\lambda _2$$ of the graph can be bounded using a weighted discrete Hardy inequality and the higher eigenvalues of the graph can be bounded by the eigenvalues of a tridiagonal matrix times a multiplicative factor, both of which only depend on the volume growth of the graph. As a direct application, we relate the eigenvalues to the Cheeger isoperimetric constant. Using these methods, we describe classes of graphs for which the Cheeger inequality is tight on the 2nd eigenvalue (i.e. the 1st nonzero eigenvalue). We also describe a method for proving Buser’s Inequality in graphs, particularly under a lower bound assumption on curvature.
more »
« less
This content will become publicly available on February 17, 2026
Joint ergodicity for functions of polynomial growth
Abstract We provide necessary and sufficient conditions for joint ergodicity results for systems of commuting measure preserving transformations for an iterated Hardy field function of polynomial growth. Our method builds on and improves recent techniques due to Frantzikinakis and Tsinas, who dealt with multiple ergodic averages along Hardy field functions; it also enhances an approach introduced by the authors and Ferré Moragues to study polynomial iterates. The more general expression, in which the iterate is a linear combination of a Hardy field function of polynomial growth and a tempered function, is studied as well.
more »
« less
- Award ID(s):
- 2247331
- PAR ID:
- 10587129
- Publisher / Repository:
- Springer Nature SharedIt
- Date Published:
- Journal Name:
- Israel Journal of Mathematics
- ISSN:
- 0021-2172
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We construct the Neumann function in a 1-sided chord-arc domain (i.e., a uniform domain with an Ahlfors regular boundary), and establish size and Hölder continuity estimates up to the boundary. We then obtain a Kenig-Pipher type theorem, in whichLpsolvability of the Neumann problem is shown to yield solvability inLqfor 1 <q<p, and in the Hardy spaceH1, in 2-sided chord-arc domains, under suitable background hypotheses.more » « less
-
Abstract We derivea prioriestimates for the compressible free boundary Euler equations in the case of a liquid without surface tension. We provide a new weighted functional framework which leads to the improved regularity of the flow map by using the Hardy inequality. One of main ideas is to decompose the initial density function. It is worth mentioning that in our analysis we do not need the higher order wave equation for the density.more » « less
-
This work aims to prove a Hardy-type inequality and a trace theorem for a class of function spaces on smooth domains with a nonlocal character. Functions in these spaces are allowed to be as rough as an [Formula: see text]-function inside the domain of definition but as smooth as a [Formula: see text]-function near the boundary. This feature is captured by a norm that is characterized by a nonlocal interaction kernel defined heterogeneously with a special localization feature on the boundary. Thus, the trace theorem we obtain here can be viewed as an improvement and refinement of the classical trace theorem for fractional Sobolev spaces [Formula: see text]. Similarly, the Hardy-type inequalities we establish for functions that vanish on the boundary show that functions in this generalized space have the same decay rate to the boundary as functions in the smaller space [Formula: see text]. The results we prove extend existing results shown in the Hilbert space setting with p = 2. A Poincaré-type inequality we establish for the function space under consideration together with the new trace theorem allows formulating and proving well-posedness of a nonlinear nonlocal variational problem with conventional local boundary condition.more » « less
-
Abstract This paper studies the problem of synthesizing (lexicographic) polynomial ranking functions for loops that can be described in polynomial arithmetic over integers and reals. While the analogous ranking function synthesis problem forlineararithmetic is decidable, even checking whether agivenfunction ranks an integer loop is undecidable in the nonlinear setting. We side-step the decidability barrier by working within the theory of linear integer/real rings (LIRR) rather than the standard model of arithmetic. We develop a termination analysis that is guaranteed to succeed if a loop (expressed as a formula) admits a (lexicographic) polynomial ranking function. In contrast to template-based ranking function synthesis inrealarithmetic, our completeness result holds for lexicographic ranking functions of unbounded dimension and degree, and effectively subsumes linear lexicographic ranking function synthesis for linearintegerloops.more » « less
An official website of the United States government
