skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 14, 2026

Title: Schottky barrier formation and band realignment of rare-earth tritelluride charge density wave material–semiconductor interfaces
We investigated the formation of Schottky barriers at the interface between rare-earth tritelluride (RTe3) crystals and n-type silicon (n-Si) substrates. This study explores the rectifying characteristics of RTe3/n-Si junctions (R = Dy, Ho, Er) and their relation to the charge density wave (CDW) transition. Using the thermionic emission model, we analyzed current–voltage (I–V) measurements to obtain the Schottky barrier height (ϕSBH) and the ideality factor (η). The temperature dependence of the extracted ϕSBH and η reveals kink features near the CDW transition temperature. The Schottky–Mott model is employed to explain these kink features in the derivatives of ϕSBH and 1/η and attributes them to changes in the work function of RTe3 during the CDW transition. Our findings suggest that Schottky junctions can be utilized to probe the electronic states of RTe3, enabling potential RTe3 device applications in electronics and optoelectronics.  more » « less
Award ID(s):
2206987 2235143
PAR ID:
10587182
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Applied Physics Letters
Date Published:
Journal Name:
Applied Physics Letters
Volume:
126
Issue:
15
ISSN:
0003-6951
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Plasmonic hot‐electron‐assisted control of emission intensities and dynamics of CdSe/ZnS and infrared PbS quantum dots are studied. This is done by exploring the impact of Au/Si and Ag/Si Schottky junctions on the decay rates of such quantum dots when these junctions are placed in close vicinity of a Si/Al oxide charge barrier, forming metal‐oxide plasmonic metafilms. Such structures are used to investigate how metal‐dependent distributions of hot electrons and their capture via Schottky junctions can lead to suppression of the defect environments of quantum dots, offering a novel platform wherein off‐resonant (non‐Purcell) plasmonic processes are used to control exciton dynamics. These results show that Ag metafilms can enhance the emission of CdSe/ZnS quantum dots and elongate their lifetimes more than Au metafilms. This highlights the more efficient nature of Ag/Si Schottky junctions for hot electron excitation and capture. These results also show that such junctions can significantly suppress the nonradiative decay rates of PbS quantum dots at frequencies far from the plasmon resonances. These results demonstrate a field‐effect passivation of quantum dot defects via entrapment of hot electrons and control of emission intensities and dynamics of quantum dots via the nearly frequency‐independent electrostatic field of such electrons. 
    more » « less
  2. null (Ed.)
    Light-addressable electrochemical sensors (LAESs) are a class of sensors that use light to activate an electrochemical reaction on the surface of a semiconducting photoelectrode. Here, we investigate semiconductor/metal (Schottky) junctions formed between n-type Si and Au nanoparticles as lightaddressable electrochemical sensors. To demonstrate this concept, we prepared n-Si/Au nanoparticle Schottky junctions by electrodeposition and characterized them using scanning electron microscopy, cyclic voltammetry, and electrochemical impedance spectroscopy. We found that the sensors behaved almost identically to Au disk electrodes for the oxidation of an outer-sphere redox couple (ferrocene methanol) and two inner-sphere redox couples (potassium ferrocyanide and dopamine). In buffered dopamine solutions, we observed broad linear ranges and submicromolar detection limits. We then used local illumination to generate a virtual array of electrochemical sensors for dopamine as a strategy for circumventing sensor fouling, which is a persistent problem for electrochemical dopamine sensors. By locally illuminating a small portion of the photoelectrode, many measurements of fouling analytes can be made on a single sensor with a single electrical connection by moving the light beam to a fresh area of the sensor. Altogether, these results pave the way for Schottky junction light-addressable electrochemical sensors to be useful for a number of interesting future applications in chemical and biological sensing. 
    more » « less
  3. null (Ed.)
    Group IVB transition metal dichalcogenides (TMDCs) have attracted significant attention due to their predicted high charge carrier mobility, large sheet current density, and enhanced thermoelectric power. Here, we investigate the electrical and optoelectronic properties of few-layer titanium diselenide (TiSe 2 )-metal junctions through spatial-, wavelength-, temperature-, power- and temporal-dependent scanning photocurrent measurements. Strong photocurrent responses have been detected at TiSe 2 -metal junctions, which is likely attributed to both photovoltaic and photothermoelectric effects. A fast response time of 31 μs has been achieved, which is two orders of magnitude better than HfSe 2 based devices. More importantly, our experimental results reveal a significant enhancement in the response speed upon cooling to the charge-density-wave (CDW) phase transition temperature ( T CDW = 206 K), which may result from dramatic reduction in carrier scattering that occurs as a result of the switching between the normal and CDW phases of TiSe 2 . Additionally, the photoresponsivity at 145 K is up to an order of magnitude higher than that obtained at room temperature. These fundamental studies not only offer insight for the photocurrent generation mechanisms of group IVB TMDC materials, but also provide a route to engineering future temperature-dependent, two-dimensional, fast electronic and optoelectronic devices. 
    more » « less
  4. null (Ed.)
    Salt metathesis reactions between a low-valent rhenium( i ) complex, Na[Re(η 5 -Cp)(BDI)] (BDI = N , N ′-bis(2,6-diisopropylphenyl)-3,5-dimethyl-β-diketiminate), and a series of amidinate-supported tetrylenes of the form ECl[PhC(N t Bu) 2 ] (E = Si, Ge, Sn) led to rhenium metallotetrylenes Re(E[PhC(N t Bu) 2 ])(η 5 -Cp)(BDI) (E = Si ( 1a ), Ge ( 2 ), Sn ( 4 )) with varying extents of Re–E multiple bonding. Whereas the rhenium–stannylene 4 adopts a σ-metallotetrylene arrangement featuring a Re–E single bond, the rhenium–silylene ( 1a ) and –germylene ( 2 ) both engage in π-interactions to form short Re–E multiple bonds. Temperature was found to play a crucial role in reactions between Na[Re(η 5 -Cp)(BDI)] and SiCl[PhC(N t Bu) 2 ], as manipulation of reaction conditions led to isolation of an unusual rhenium–silane, (BDI)Re(μ-η 5 :η 1 -C 5 H 4 )(SiH[PhC(N t Bu) 2 ]) ( 1b ) and a dinitrogen bridged rhenium–silylene, (η 5 -Cp)(BDI)Re(μ-N 2 )Si[PhC(N t Bu) 2 ] ( 1c ), in addition to 1a . Finally, the reaction of Na[Re(η 5 -Cp)(BDI)] with GeCl 2 ·dioxane led to a rare μ 2 -tetrelido complex, μ 2 -Ge[Re(η 5 -Cp)(BDI)] 2 ( 3 ). Bonding interactions within these complexes are discussed through the lens of various spectroscopic, structural, and computational investigations. 
    more » « less
  5. Abstract Metal‐semiconductor heterostructures providing geometrically reproducible and abrupt Schottky nanojunctions are highly anticipated for the realization of emerging electronic technologies. This specifically holds for reconfigurable field‐effect transistors, capable of dynamically altering the operation mode between n‐ or p‐type even during run‐time. Targeting the enhancement of fabrication reproducibility and electrical balancing between operation modes, here a nanoscale Al‐Si‐Al nanowire heterostructure with single elementary, monocrystalline Al leads and sharp Schottky junctions is implemented. Utilizing a three top‐gate architecture, reconfiguration on transistor level is enabled. Having devised symmetric on‐currents as well as threshold voltages for n‐ and p‐type operation as a necessary requirement to exploit complementary reconfigurable circuits, selected implementations of logic gates such as inverters and combinational wired‐AND gates are reported. In this respect, exploiting the advantages of the proposed multi‐gate transistor architecture and offering additional logical inputs, the device functionality can be expanded by transforming a single transistor into a logic gate. Importantly, the demonstrated Al‐Si material system and thereof shown logic gates show high compatibility with state‐of‐the‐art complementary metal‐oxide semiconductor technology. Additionally, exploiting reconfiguration at the device level, this platform may pave the way for future adaptive computing systems with low‐power consumption and reduced footprint, enabling novel circuit paradigms. 
    more » « less