Most current climate models predict that the equatorial Pacific will evolve under greenhouse gas–induced warming to a more El Niño-like state over the next several decades, with a reduced zonal sea surface temperature gradient and weakened atmospheric Walker circulation. Yet, observations over the last 50 y show the opposite trend, toward a more La Niña-like state. Recent research provides evidence that the discrepancy cannot be dismissed as due to internal variability but rather that the models are incorrectly simulating the equatorial Pacific response to greenhouse gas warming. This implies that projections of regional tropical cyclone activity may be incorrect as well, perhaps even in the direction of change, in ways that can be understood by analogy to historical El Niño and La Niña events: North Pacific tropical cyclone projections will be too active, North Atlantic ones not active enough, for example. Other perils, including severe convective storms and droughts, will also be projected erroneously. While it can be argued that these errors are transient, such that the models’ responses to greenhouse gases may be correct in equilibrium, the transient response is relevant for climate adaptation in the next several decades. Given the urgency of understanding regional patterns of climate risk in the near term, it would be desirable to develop projections that represent a broader range of possible future tropical Pacific warming scenarios—including some in which recent historical trends continue—even if such projections cannot currently be produced using existing coupled earth system models.
more »
« less
This content will become publicly available on February 15, 2026
A More La Niña–Like Response to Radiative Forcing after Flux Adjustment in CESM2
Abstract In response to greenhouse gas forcing, most coupled global climate models project the tropical Pacific SST trend toward an “El Niño–like” state, with a reduced zonal SST gradient and a weakened Walker circulation. However, observations over the last five decades reveal a trend toward a more “La Niña–like” state with a strengthening zonal SST gradient. Recent research indicates that the identified trend differences are unlikely to be entirely due to internal variability and probably result, at least in part, from systematic model biases. In this study, Community Earth System Model, version 2 (CESM2), is used to explore how mean-state biases within the model may influence its forced response to radiative forcing in the tropical Pacific. The results show that using flux adjustment to reduce the mean-state bias in CESM2 over the tropical regions results in a more La Niña–like trend pattern in the tropical Pacific, with a strengthening of the tropical Pacific zonal SST gradient and a relatively enhanced Walker circulation, as hypothesized to occur if the ocean thermostat mechanism is stronger than the atmospheric mechanisms which by themselves would weaken the Walker circulation. We also find that the historical strengthening of the tropical Pacific zonal gradient is transient but persists into the near term in a high-emissions future warming scenario. These results suggest the potential of flux adjustment as a method for developing alternative projections that represent a wider range of possible future tropical Pacific warming scenarios, especially for a better understanding of regional patterns of climate risk in the near term.
more »
« less
- PAR ID:
- 10587296
- Publisher / Repository:
- American Meteorological Society
- Date Published:
- Journal Name:
- Journal of Climate
- Volume:
- 38
- Issue:
- 4
- ISSN:
- 0894-8755
- Page Range / eLocation ID:
- 1037 to 1050
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The El Niño—Southern Oscillation (ENSO) is an important mode of tropical Pacific atmosphere‐ocean variability that drives teleconnections with weather and climate globally. However, prior studies using state‐of‐the‐art climate models lack consensus regarding future ENSO projections and are often impacted by tropical Pacific sea‐surface temperature (SST) biases. We used 173 simulations from 29 climate models participating in the Coupled Model Intercomparison Project, version 6 (CMIP6) to analyze model biases and future ENSO projections. We analyzed two ENSO indices, namely the ENSO Longitude Index (ELI), which measures zonal shifts in tropical Pacific deep convection and accounts for changes in background SST, and the Niño 3.4 index, which measures SST anomalies in the central‐eastern equatorial Pacific. We found that the warm eastern tropical‐subtropical Pacific SST bias typical of previous generations of climate models persists into many of the CMIP6 models. Future projections of ENSO shift toward more El Niño‐like conditions based on ELI in 48% of simulations and 55% of models, in association with a future weakening of the zonal equatorial Pacific SST gradient. On the other hand, none of the models project a significant shift toward La Niña‐like conditions. The standard deviation of the Niño 3.4 index indicates a lack of consensus on whether an increase or decrease in ENSO variability is expected in the future. Finally, we found a possible relationship between historical SST and low‐level cloud cover biases in the ENSO region and future changes in ELI; however, this result may be impacted by limitations in data availability.more » « less
-
Abstract Changes in the zonal gradients of sea surface temperature (SST) across the equatorial Pacific have major consequences for global climate. Therefore, accurate future projections of these tropical Pacific gradients are of paramount importance for climate mitigation and adaptation. Yet there is evidence of a dichotomy between observed historical gradient trends and those simulated by climate models. Observational records appear to show a “La Niña-like” strengthening of the zonal SST gradient over the past century, whereas most climate model simulations project “El Niño-like” changes toward a weaker gradient. Here, studies of these equatorial Pacific climate trends are reviewed, focusing first on data analyses and climate model simulations, then on theories that favor either enhanced or weakened zonal SST gradients, and then on notable consequences of the SST gradient trends. We conclude that the present divergence between the historical model simulations and the observed trends likely either reflects an error in the model’s forced response, or an underestimate of the multi-decadal internal variability by the models. A better understanding of the fundamental mechanisms of both forced response and natural variability is needed to reduce the uncertainty. Finally, we offer recommendations for future research directions and decision-making for climate risk mitigation.more » « less
-
Abstract Zonal extensions of the Western Pacific subtropical high (WPSH) strongly modulate extreme rainfall activity and tropical cyclone (TC) landfall over the Western North Pacific (WNP) region. These zonal extensions are primarily forced on seasonal timescales by inter‐basin zonal sea surface temperature (SST) gradients. However, despite the presence of large‐scale zonal SST gradients, the WPSH response to SSTs varies from year to year. In this study, we force the atmosphere‐only NCAR Community Earth System Model version 2 simulations with two real‐world SST patterns, both featuring the large‐scale zonal SST gradient characteristic of decaying El Niño‐developing La Niña summers. For each of these patterns, we performed four experimental sets that tested the relative contributions of the tropical Indian Ocean, Pacific, and Atlantic basin SSTs to simulated westward extensions over the WNP during June–August. Our results indicate that the subtle differences between the two SST anomaly patterns belie two different mechanisms forcing the WPSH's westward extensions. In one SST anomaly pattern, extratropical North Pacific SST forcing suppresses the tropical Pacific zonal SST gradient forcing, resulting in tropical Atlantic and Indian Ocean SSTs being the dominant driver. The second SST anomaly pattern drives a similar westward extension as the first pattern, but the underlying SST gradient driving the WPSH points to intra‐basin forcing mechanisms originating in the Pacific. The results of this study have implications for understanding and predicting the impact of the WPSH's zonal variability on tropical cyclones and extreme rainfall over the WNP.more » « less
-
Most state-of-art models project a reduced equatorial Pacific east-west temperature gradient and a weakened Walker circulation under global warming. However, the causes of this robust projection remain elusive. Here, we devise a series of slab ocean model experiments to diagnostically decompose the global warming response into the contributions from the direct carbon dioxide (CO2) forcing, sea ice changes, and regional ocean heat uptake. The CO2forcing dominates the Walker circulation slowdown through enhancing the tropical tropospheric stability. Antarctic sea ice changes and local ocean heat release are the dominant drivers for reduced zonal temperature gradient over the equatorial Pacific, while the Southern Ocean heat uptake opposes this change. Corroborating our model experiments, multimodel analysis shows that the models with greater Southern Ocean heat uptake exhibit less reduction in the temperature gradient and less weakening of the Walker circulation. Therefore, constraining the tropical Pacific projection requires a better insight into Southern Ocean processes.more » « less