ABSTRACT Earthquake stress drop—a key parameter for describing the energetics of earthquake rupture—can be estimated in several different, but theoretically equivalent, ways. However, independent estimates for the same earthquakes sometimes differ significantly. We find that earthquake source complexity plays a significant role in why theoretically (for simple rupture models) equivalent methods produce different estimates. We apply time- and frequency-domain methods to estimate stress drops for real earthquakes in the SCARDEC (Seismic source ChAracteristics Retrieved from DEConvolving teleseismic body waves, Vallée and Douet, 2016) source time function (STF) database and analyze how rupture complexity drives stress-drop estimate discrepancies. Specifically, we identify two complexity metrics—Brune relative energy (BRE) and spectral decay—that parameterize an earthquake’s complexity relative to the standard Brune model and strongly correlate with the estimate discrepancies. We find that the observed systematic magnitude–stress-drop trends may reflect underlying changes in STF complexity, not necessarily trends in actual stress drop. Both the decay and BRE parameters vary systematically with magnitude, but whether this magnitude–complexity relationship is real remains unresolved.
more »
« less
This content will become publicly available on April 21, 2026
Factors That Influence Variability in Stress-Drop Measurements Using Spectral Decomposition and Spectral-Ratio Methods for the 2019 Ridgecrest Earthquake Sequence
ABSTRACT Stress drop is a fundamental parameter related to earthquake source physics, but is hard to measure accurately. To better understand how different factors influence stress-drop measurements, we compare two different methods using the Ridgecrest stress-drop validation data set: spectral decomposition (SD) and spectral ratio (SR), each with different processing options. We also examine the influence of spectral complexity on source parameter measurement. Applying the SD method, we find that frequency bandwidth and time-window length could influence spectral magnitude calibration, while depth-dependent attenuation is important to correctly map stress-drop variations. For the SR method, we find that the selected source model has limited influence on the measurements; however, the Boatwright model tends to produce smaller standard deviation and larger magnitude dependence than the Brune model. Variance reduction threshold, frequency bandwidth, and time-window length, if chosen within an appropriate parameter range, have limited influence on source parameter measurement. For both methods, wave type, attenuation correction, and spectral complexity strongly influence the result. The scale factor that quantifies the magnitude dependence of stress drop show large variations with different processing options, and earthquakes with complex source spectra deviating from the Brune-type source models tend to have larger scale factor than earthquakes without complexity. Based on these detailed comparisons, we make a few specific suggestions for data processing workflows that could help future studies of source parameters and interpretations.
more »
« less
- PAR ID:
- 10587419
- Publisher / Repository:
- BSSA
- Date Published:
- Journal Name:
- Bulletin of the Seismological Society of America
- ISSN:
- 0037-1106
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Analysis of earthquake spectra can aid in understanding source characteristics like stress drop and rupture complexity. There is growing interest in probing the similarities and differences of fault rupture for natural and human-induced seismic events. Here, we analyze waveform data from a shallow, buried geophone array that recorded seismicity during a hydraulic fracturing operation near Fox Creek, Alberta. Starting from a quality-controlled catalog of 4000 events between magnitude 0 and 3.2, we estimate source-spectral corner frequencies using methods that account for the band-limited nature of the sensor response. The stress-drop values are found to be approximately self-similar, but with a slight magnitude dependence in which larger events have higher stress drop (∼10 MPa). Careful analysis of the relative corner frequencies shows that individual fault and fracture segments experienced systematic variations in relative corner frequency over time, indicating a possible change in the stress state. Clustering analysis of source spectra based on the relative proportion of high- and low-frequency content relative to the Brune model further shows that event complexity evolves over time. In addition, the faults produce earthquakes with systematically larger stress-drop values than the fractures. Combined, these results indicate that the features activated by hydraulic fracturing experience observable changes in source behavior over time and exhibit different properties depending on the orientation, scale, and fabric of the structural feature on which they occur.more » « less
-
Stress drop, a crucial source parameter in earthquake studies, significantly influences ground motion prediction and seismic hazard assessment. Despite several existing methods to estimate stress drops, the resulting stress drop estimates often exhibit a wide variation of up to 3-4 orders of magnitude. In this study, we address the robustness of stress drop estimation by introducing a point-wise spectral ratio stacking approach based on empirical Green’s functions (eGfs). Conventional trace-wise stacking can lead to data exclusion due to high signal-to-noise ratio requirements across a wide range of frequency. By adopting point-wise stacking, we maximize the utilization of useful recording information, leading to more accurate stress drop estimates. We applied the point-wise spectral ratio stacking method to a comprehensive dataset comprising global earthquakes from 1990 to 2020 with magnitude larger than Mw5.5 and depth shallower than 50 km. We first verified the moment magnitudes of earthquakes estimated from the resulting seismic moment ratios. We found that the moment magnitude of master events best consistent with catalog magnitudes when the magnitude difference between master and their eGfs differs by about 0.5. Our analysis indicates that stress drop of shallow earthquakes exhibits no depth dependence, while showing a slight increase with magnitude. The results obtained through our optimized stacking process shed new light on stress drop estimate of shallow earthquakes and have the potential to enhance the understanding of earthquake mechanics.more » « less
-
ABSTRACT The recorded seismic waveform is a convolution of event source term, path term, and station term. Removing high-frequency attenuation due to path effect is a challenging problem. Empirical Green’s function (EGF) method uses nearly collocated small earthquakes to correct the path and station terms for larger events recorded at the same station. However, this method is subject to variability due to many factors. We focus on three events that were well recorded by the seismic network and a rapid response distributed acoustic sensing (DAS) array. Using a suite of high-quality EGF events, we assess the influence of time window, spectral measurement options, and types of data on the spectral ratio and relative source time function (RSTF) results. Increased number of tapers (from 2 to 16) tends to increase the measured corner frequency and reduce the source complexity. Extended long time window (e.g., 30 s) tends to produce larger variability of corner frequency. The multitaper algorithm that simultaneously optimizes both target and EGF spectra produces the most stable corner-frequency measurements. The stacked spectral ratio and RSTF from the DAS array are more stable than two nearby seismic stations, and are comparable to stacked results from the seismic network, suggesting that DAS array has strong potential in source characterization.more » « less
-
ABSTRACT Although the Brune source model describes earthquake moment release as a single pulse, it is widely used in studies of complex earthquakes with multiple episodes of high moment release (i.e., multiple subevents). In this study, we investigate how corner frequency estimates of earthquakes with multiple subevents are biased if they are based on the Brune source model. By assuming complex sources as a sum of multiple Brune sources, we analyze 1640 source time functions of Mw 5.5–8.0 earthquakes in the seismic source characteristic retrieved from deconvolving teleseismic body waves catalog to estimate the corner frequencies, onset times, and seismic moments of subevents. We identify more subevents for strike-slip earthquakes than dip-slip earthquakes, and the number of resolvable subevents increases with magnitude. We find that earthquake corner frequency correlates best with the corner frequency of the subevent with the highest moment release (i.e., the largest subsevent). This suggests that, when the Brune model is used, the estimated corner frequency and, therefore, the stress drop of a complex earthquake is determined primarily by the largest subevent rather than the total rupture area. Our results imply that, in addition to the simplified assumption of a radial rupture area with a constant rupture velocity, the stress variation of asperities, rather than the average stress change of the whole fault, contributes to the large variance of stress-drop estimates.more » « less
An official website of the United States government
