skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 4, 2026

Title: Effect of Time Window and Spectral Measurement Options on Empirical Green’s Function Analysis Using DAS Array and Seismic Stations
ABSTRACT The recorded seismic waveform is a convolution of event source term, path term, and station term. Removing high-frequency attenuation due to path effect is a challenging problem. Empirical Green’s function (EGF) method uses nearly collocated small earthquakes to correct the path and station terms for larger events recorded at the same station. However, this method is subject to variability due to many factors. We focus on three events that were well recorded by the seismic network and a rapid response distributed acoustic sensing (DAS) array. Using a suite of high-quality EGF events, we assess the influence of time window, spectral measurement options, and types of data on the spectral ratio and relative source time function (RSTF) results. Increased number of tapers (from 2 to 16) tends to increase the measured corner frequency and reduce the source complexity. Extended long time window (e.g., 30 s) tends to produce larger variability of corner frequency. The multitaper algorithm that simultaneously optimizes both target and EGF spectra produces the most stable corner-frequency measurements. The stacked spectral ratio and RSTF from the DAS array are more stable than two nearby seismic stations, and are comparable to stacked results from the seismic network, suggesting that DAS array has strong potential in source characterization.  more » « less
Award ID(s):
2328485 1848166 2225216
PAR ID:
10587421
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
BSSA
Date Published:
Journal Name:
Bulletin of the Seismological Society of America
ISSN:
0037-1106
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. SUMMARY In this study, I demonstrate that distributed acoustic sensing (DAS) raw strain rate data can directly be used to estimate spectral source parameters through an Empirical Green's Function (EGF) deconvolution analysis. Previously, DAS had been widely used in passive seismology to image the subsurface and analyze ground motion variations by converting strain or strain rate to particle velocity or acceleration prior to analysis. In this study, spectral analysis is applied to the PoroTomo joint DAS and seismic Nodal array in the Brady Hot Springs geothermal field to obtain source parameters for two M4 earthquakes via EGF analysis, where nearly collocated smaller events are used as an EGF to remove path and site effects. The EGF workflow is applied to raw DAS strain rate data without conversion to particle velocities and raw Nodal seismic data. The DAS and Nodal results are very consistent with similar features of spectral ratios, corner frequencies and moment ratios for the same event pairs. The uncertainty due to stacked spectral measurement is much lower on the DAS array, suggesting better stability of spectral shape measurement, possibly due to the much denser spatial sampling. The uncertainty due to model fitting is similar between DAS and Nodal arrays with slightly lower uncertainty on the DAS array. These observations demonstrate potential for directly using the strain rate measurements from DAS arrays for earthquake source characterizations. 
    more » « less
  2. Abstract Analysis of earthquake spectra can aid in understanding source characteristics like stress drop and rupture complexity. There is growing interest in probing the similarities and differences of fault rupture for natural and human-induced seismic events. Here, we analyze waveform data from a shallow, buried geophone array that recorded seismicity during a hydraulic fracturing operation near Fox Creek, Alberta. Starting from a quality-controlled catalog of 4000 events between magnitude 0 and 3.2, we estimate source-spectral corner frequencies using methods that account for the band-limited nature of the sensor response. The stress-drop values are found to be approximately self-similar, but with a slight magnitude dependence in which larger events have higher stress drop (∼10 MPa). Careful analysis of the relative corner frequencies shows that individual fault and fracture segments experienced systematic variations in relative corner frequency over time, indicating a possible change in the stress state. Clustering analysis of source spectra based on the relative proportion of high- and low-frequency content relative to the Brune model further shows that event complexity evolves over time. In addition, the faults produce earthquakes with systematically larger stress-drop values than the fractures. Combined, these results indicate that the features activated by hydraulic fracturing experience observable changes in source behavior over time and exhibit different properties depending on the orientation, scale, and fabric of the structural feature on which they occur. 
    more » « less
  3. Abstract Distributed acoustic sensing (DAS) is a recently developed technique that has demonstrated its utility in the oil and gas industry. Here we demonstrate the potential of DAS in teleseismic studies using the Goldstone OpticaL Fiber Seismic experiment in Goldstone, California. By analyzing teleseismic waveforms from the 10 January 2018 M7.5 Honduras earthquake recorded on ~5,000 DAS channels and the nearby broadband station GSC, we first compute receiver functions for DAS channels using the vertical‐component GSC velocity as an approximation for the incident source wavelet. The MohoP‐to‐sconversions are clearly visible on DAS receiver functions. We then derive meter‐scale arrival time measurements along the entire 20‐km‐long array. We are also able to measure path‐averaged Rayleigh wave group velocity and local Rayleigh wave phase velocity. The latter, however, has large uncertainties. Our study suggests that DAS will likely play an important role in many fields of passive seismology in the near future. 
    more » « less
  4. The 2019 Ridgecrest, CA earthquake sequence has provided a unique opportunity and a rich dataset to understand earthquake source properties and near-fault structure. Using the high-quality seismic data provided by the SCEC Stress Drop Validation group, we first estimate the corner frequency of M2.0-4.5 earthquakes by applying the spectral ratio method based on empirical Green’s function (Liu et al., 2020). We relate corner frequency estimates to stress drops assuming the Brune source model and circular cracks. Our preliminary results show increasing median stress drops with magnitude for both P and S waves, from 1 MPa for M2.0 events to 10 MPa for M4.0 events, though the limited frequency bandwidth may cause underestimation for small events. The estimated moment magnitude is proportional to the catalog magnitude by a factor of 0.72, which is close to 0.74 estimated by Trugman (2020) for the Ridgecrest earthquake sequence. In the second part of the study, we examine the impact of fault zone structure on the azimuthal variation of the source spectra. Using kinematic simulations and observations of the 2003 Big Bear earthquake sequence, Huang et al. (2016) showed that fault damage zones can act as an effective wave guide and cause high-frequency wave amplification along directions close to fault strike. We use clusters of M1.5-3 earthquakes in the Ridgecrest region to further examine the azimuthal variation of the stacked source spectra and investigate if the near-source structure can affect our corner frequency estimates. We aim to develop robust methods that utilize high-quality seismic data to illuminate earthquake source processes and fault zone properties. 
    more » « less
  5. Abstract The spectra of earthquake waveforms can provide important insight into rupture processes, but the analysis and interpretation of these spectra is rarely straightforward. Here we develop a Bayesian framework that embraces the inherent data and modeling uncertainties of spectral analysis to infer key source properties. The method uses a spectral ratio approach to correct the observedS‐wave spectra of nearby earthquakes for path and site attenuation. The objective then is to solve for a joint posterior probability distribution of three source parameters—seismic moment, corner frequency, and high‐frequency falloff rate—for each earthquake in the sequence, as well as a measure of rupture directivity for select target events with good azimuthal station coverage. While computationally intensive, this technique provides a quantitative understanding of parameter tradeoffs and uncertainties and allows one to impose physical constraints through prior distributions on all source parameters, which guide the inversion when data is limited. We demonstrate the method by analyzing in detail the source properties of 14 different target events of magnitude M5 in southern California that span a wide range of tectonic regimes and fault systems. These prominent earthquakes, while comparable in size, exhibit marked diversity in their source properties and directivity, with clear spatial patterns, depth‐dependent trends, and a preference for unilateral directivity. These coherent spatial variations source properties suggest that regional differences in tectonic setting, hypocentral depth or fault zone characteristics may drive variability in rupture processes, with important implications for our understanding of earthquake physics and its relation to hazard. 
    more » « less