Abstract The compounding effects of anthropogenic legacies for environmental pollution are significant, but not well understood. Here, we show that centennial‐scale legacies of milldams and decadal‐scale legacies of road salt salinization interact in unexpected ways to produce hot spots of nitrogen (N) in riparian zones. Riparian groundwater and stream water concentrations upstream of two mid‐Atlantic (Pennsylvania and Delaware) milldams, 2.4 and 4 m tall, were sampled over a 2 year period. Clay and silt‐rich legacy sediments with low hydraulic conductivity, stagnant and poorly mixed hydrologic conditions, and persistent hypoxia in riparian sediments upstream of milldams produced a unique biogeochemical gradient with nitrate removal via denitrification at the upland riparian edge and ammonium‐N accumulation in near‐stream sediments and groundwaters. Riparian groundwater ammonium‐N concentrations upstream of the milldams ranged from 0.006 to 30.6 mgN L−1while soil‐bound values were 0.11–456 mg kg−1. We attribute the elevated ammonium concentrations to ammonification with suppression of nitrification and/or dissimilatory nitrate reduction to ammonium (DNRA). Sodium inputs to riparian groundwater (25–1,504 mg L−1) from road salts may further enhance DNRA and ammonium production and displace sorbed soil ammonium‐N into groundwaters. This study suggests that legacies of milldams and road salts may undercut the N buffering capacity of riparian zones and need to be considered in riparian buffer assessments, watershed management plans, and dam removal decisions. Given the widespread existence of dams and other barriers and the ubiquitous use of road salt, the potential for this synergistic N pollution is significant.
more »
« less
Seasonal Variation and Key Controls of Groundwater Ammonium Concentrations in Hypoxic/Anoxic Riparian Sediments
Abstract The seasonal controls of hydrology, temperature, hypoxia, and biogeochemical conditions for groundwater ammonium–N (NH4+) concentrations are not well understood. Here we investigated these controls for riparian groundwaters located upstream of two milldams over a period of 4 years. Groundwater chemistry was sampled monthly while groundwater elevations, hydraulic gradients, and temperatures were recorded sub‐hourly. Distinct seasonal patterns for NH4+were observed which differed among the wells. For wells that displayed a strong seasonal pattern, NH4+concentrations increased through the summer and peaked in October–November. These elevated concentrations were attributed to ammonification, suppression of nitrification, and/or dissimilatory nitrate reduction to ammonium (DNRA). These processes were driven by high groundwater temperatures, low hydraulic gradients (or long residence times), hypoxic/anoxic groundwater conditions, and increased availability of dissolved organic carbon as an electron donor. In contrast, NH4+concentrations decreased in the riparian groundwater from January to April during cool and wet conditions. A groundwater well with elevated total dissolved iron (TdFe) concentrations had elevated NH4+concentrations but displayed a muted seasonal response. In addition to hydrologic controls, we attributed this response to additional NH4+contribution from Fe‐driven autotrophic DNRA and/or ammonification linked to dissimilatory Fe reduction. Understanding the temporal patterns and factors controlling NH4+in riparian groundwaters is important for making appropriate watershed management decisions and implementing appropriate best management practices.
more »
« less
- PAR ID:
- 10587433
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Biogeosciences
- Volume:
- 130
- Issue:
- 2
- ISSN:
- 2169-8953
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Groundwater nitrate‐N isotopes (δ15N‐) have been used to infer the effects of natural and anthropogenic change on N cycle processes in the environment. Here we report unexpected changes in groundwater δ15N‐ for riparian zones affected by relict milldams and road salt salinization. Contrary to natural, undammed conditions, groundwater δ15N‐ values declined from the upland edge through the riparian zone and were lowest near the stream. Groundwater δ15N‐ values increased for low electron donor (dissolved organic carbon) to acceptor ratios but decreased beyond a change point in ratios. Groundwater δ15N‐ values were particularly low for the riparian milldam site subjected to road‐salt salinization. We attributed these N isotopic trends to suppression of denitrification, occurrence of dissimilatory nitrate reduction to ammonium (DNRA), and/or effects of road salt salinization. Groundwater δ15N‐ can provide valuable insights into process mechanisms and can serve as “imprints” of anthropogenic activities and legacies.more » « less
-
Abstract How milldams alter riparian hydrologic and groundwater mixing regimes is not well understood. Understanding the effects of milldams and their legacies on riparian hydrology is key to assessing riparian pollution buffering potential and for making appropriate watershed management decisions. We examined the spatiotemporal effects of milldams on groundwater gradients, flow directions, and mixing regime for two dammed sites on Chiques Creek, Pennsylvania (2.4 m tall milldam), and Christina River, Delaware (4 m tall dam), USA. Riparian groundwater levels were recorded every 30 min for multiple wells and transects. Groundwater mixing regime was characterized using 30‐min specific conductance data and selected chemical tracers measured monthly for about 2 years. Three distinct regimes were identified for riparian groundwaters—wet, dry, and storm. Riparian groundwater gradients above the dam were low but were typically from the riparian zone to the stream. These flow directions were reversed (stream to riparian) during dry periods due to riparian evapotranspiration losses and during peak stream flows. Longitudinal (parallel to the stream) riparian flow gradients and directions also varied across the hydrologic regimes. Groundwater mixing varied spatially and temporally between storms and seasons. Near‐stream groundwater was poorly flushed or mixed during storms whereas that in the adjacent swales revealed greater mixing. This differential groundwater behavior was attributed to milldam legacies that include: berm and swale topography that influenced the routing of surface waters, varying riparian legacy sediment depths and hydraulic conductivities, evapotranspiration losses from riparian vegetation, and runoff input from adjoining roads.more » « less
-
Research on the impact of seawater intrusion on nitrogen (N) cycling in coastal estuarine ecosystems is crucial; however, there is still a lack of relevant research conducted underin-situfield conditions. The effects of elevated salinity on N cycling processes and microbiomes were examinedin situseawater intrusion experiments conducted from 2019 to 2021 in the Nakdong River Estuary (South Korea), where an estuarine dam regulates tidal hydrodynamics. After the opening of the Nakdong Estuary Dam (seawater intrusion event), the density difference between seawater and freshwater resulted in varying degrees of seawater trapping at topographically deep stations. Bottom-water oxygen conditions had been altered in normoxia, hypoxia, and weak hypoxia due to the different degrees of seawater trapping in 2019, 2020, and 2021, respectively. Denitrification mostly dominated the nitrate (NO3-) reduction process, except in 2020 after seawater intrusion. However, denitrification rates decreased because of reduced coupled nitrification after seawater intrusion due to the dissolved oxygen limitation in 2020. Dissimilatory nitrate reduction to ammonium (DNRA) rates immediately increased after seawater intrusion in 2020, replacing denitrification as the dominant pathway in the NO3-reduction process. The enhanced DNRA rate was mainly due to the abundant organic matter associated with seawater invasion and more reducing environment (maybe sulfide enhancement effects) under high seawater-trapping conditions. Denitrification increased in 2021 after seawater intrusion during weak hypoxia; however, DNRA did not change. Small seawater intrusion in 2019 caused no seawater trapping and overall normoxic condition, though a slight shift from denitrification to DNRA was observed. Metagenomic analysis revealed a decrease in overall denitrification-associated genes in response to seawater intrusion in 2019 and 2020, while DNRA-associated gene abundance increased. In 2021 after seawater intrusion, microbial gene abundance associated with denitrification increased, while that of DNRA did not change significantly. These changes in gene abundance align mostly with alterations in nitrogen transformation rates. In summary, ecological change effects in N cycling after the dam opening (N retention or release, that is, eutrophication deterioration or mitigation) depend on the degree of seawater intrusion and the underlying freshwater conditions, which constitute the extent of seawater-trapping.more » « less
-
Abstract Groundwater discharge to streams is a nonpoint source of nitrogen (N) that confounds N mitigation efforts and represents a significant portion of the annual N loading to watersheds. However, we lack an understanding of where and how much groundwater N enters streams and watersheds. Nitrogen concentrations at the end of groundwater flowpaths are the culmination of biogeochemical and physical processes from the contributing land area where groundwater recharges, within the aquifer system, and in the near-stream riparian area where groundwater discharges to streams. Our research objectives were to quantify the spatial distribution of N concentrations at groundwater discharges throughout a mixed land-use watershed and to evaluate how relationships among contributing and riparian land cover, modeled aquifer characteristics, and groundwater discharge biogeochemistry explain the spatial variation in groundwater discharge N concentrations. We accomplished this by integrating high-resolution thermal infrared surveys to locate groundwater discharge, biogeochemical sampling of groundwater, and a particle tracking model that links groundwater discharge locations to their contributing area land cover. Groundwater N loading from groundwater discharges within the watershed varied substantially between and within streambank groundwater discharge features. Groundwater nitrate concentrations were spatially heterogeneous ranging from below 0.03–11.45 mg-N/L, varying up to 20-fold within meters. When combined with the particle tracking model results and land cover metrics, we found that groundwater discharge nitrate concentrations were best predicted by a linear mixed-effect model that explained over 60% of the variation in nitrate concentrations, including aquifer chemistry (dissolved oxygen, Cl−, SO42−), riparian area forested land cover, and modeled physical aquifer characteristics (discharge, Euclidean distance). Our work highlights the significant spatial variability in groundwater discharge nitrate concentrations within mixed land-use watersheds and the need to understand groundwater N processing across the many spatiotemporal scales within groundwater cycling.more » « less
An official website of the United States government

