skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 1, 2026

Title: Inference of inertial particle dynamics from limited measurements
A data assimilation approach is coined that enables the discovery of forcing functions in Lagrangian, point-particle models from limited measurements of trajectory coordinates. Central to the proposed formulation of this inverse problem is the expression of the forcing function in terms of modal basis functions that are dependent on the relative velocity difference between a known carrier flow and the particle solution weighted with coefficients that are known within confidence intervals. The probability density function of the random forcing coefficients is inferred using a combination of the forward, particle model and its adjoint dynamics, which calculates the gradient of the cost function defined as the distance between the measured and predicted particle locations. To ensure convergence of the gradient-based optimization, multiple measurements may be required. If the measurements are noisy, samples of the forcing model within an assumed Gaussian distribution of the confidence interval of the measurement are computed using a Hamiltonian Monte Carlo method. The method is verified to correctly infer the forcing function of particles traced in the Arnold–Beltrami–Childress flow and a homogeneous isotropic turbulence. The confidence interval of the inferred forcing function with respect to a flow condition is improved if the particle is exposed more frequently to the flow condition. The forcing coefficients adapt the model to flow conditions that are outside of the limited range for which the point-particle models are typically known only empirically or within confidence intervals.  more » « less
Award ID(s):
2332057
PAR ID:
10587507
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
AIP Publishing
Date Published:
Journal Name:
Physics of Fluids
Volume:
37
Issue:
4
ISSN:
1070-6631
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract High fidelity near-wall velocity measurements in wall bounded fluid flows continue to pose a challenge and the resulting limitations on available experimental data cloud our understanding of the near-wall velocity behavior in turbulent boundary layers. One of the challenges is the spatial averaging and limited spatial resolution inherent to cross-correlation-based particle image velocimetry (PIV) methods. To circumvent this difficulty, we implement an explicit no-slip boundary condition in a wavelet-based optical flow velocimetry (wOFV) method. It is found that the no-slip boundary condition on the velocity field can be implemented in wOFV by transforming the constraint to the wavelet domain through a series of algebraic linear transformations, which are formulated in terms of the known wavelet filter matrices, and then satisfying the resulting constraint on the wavelet coefficients using constrained optimization for the optical flow functional minimization. The developed method is then used to study the classical problem of a turbulent channel flow using synthetic data from a direct numerical simulation (DNS) and experimental particle image data from a zero pressure gradient, high Reynolds number turbulent boundary layer. The results obtained by successfully implementing the no-slip boundary condition are compared to velocity measurements from wOFV without the no-slip condition and to a commercial PIV code, using the velocity from the DNS as ground truth. It is found that wOFV with the no-slip condition successfully resolves the near-wall profile with enhanced accuracy compared to the other velocimetry methods, as well as other derived quantities such as wall shear and turbulent intensity, without sacrificing accuracy away from the wall, leading to state of the art measurements in the y + < 1 region of the turbulent boundary layer when applied to experimental particle images. 
    more » « less
  2. We propose a bootstrap‐based calibrated projection procedure to build confidence intervals for single components and for smooth functions of a partially identified parameter vector in moment (in)equality models. The method controls asymptotic coverage uniformly over a large class of data generating processes. The extreme points of the calibrated projection confidence interval are obtained by extremizing the value of the function of interest subject to a proper relaxation of studentized sample analogs of the moment (in)equality conditions. The degree of relaxation, or critical level, is calibrated so that the function of θ , not θ itself, is uniformly asymptotically covered with prespecified probability. This calibration is based on repeatedly checking feasibility of linear programming problems, rendering it computationally attractive. Nonetheless, the program defining an extreme point of the confidence interval is generally nonlinear and potentially intricate. We provide an algorithm, based on the response surface method for global optimization, that approximates the solution rapidly and accurately, and we establish its rate of convergence. The algorithm is of independent interest for optimization problems with simple objectives and complicated constraints. An empirical application estimating an entry game illustrates the usefulness of the method. Monte Carlo simulations confirm the accuracy of the solution algorithm, the good statistical as well as computational performance of calibrated projection (including in comparison to other methods), and the algorithm's potential to greatly accelerate computation of other confidence intervals. 
    more » « less
  3. Abstract. Scattering codes are used to study the optical properties of polar stratospheric clouds (PSCs). Particle backscattering and depolarization coefficients can be computed with available scattering codes once the particle size distribution (PSD) is known and a suitable refractive index is assumed. However, PSCs often appear as external mixtures of supercooled ternary solution (STS) droplets, solid nitric acid trihydrate (NAT) and possibly ice particles, making the assumption of a single refractive index and a single morphology to model the scatterers questionable.Here we consider a set of 15 coincident measurements of PSCs above McMurdo Station, Antarctica, using ground-based lidar, a balloon-borne optical particle counter (OPC) and in situ observations taken by a laser backscattersonde and OPC during four balloon stratospheric flights from Kiruna, Sweden. This unique dataset of microphysical and optical observations allows us to test the performances of optical scattering models when both spherical and aspherical scatterers of different composition and, possibly, shapes are present. We consider particles as STS if their radius is below a certain threshold value Rth and NAT or possibly ice if it is above it. The refractive indices are assumed known from the literature. Mie scattering is used for the STS, assumed spherical. Scattering from NAT particles, considered spheroids of different aspect ratio (AR), is treated with T-matrix results where applicable. The geometric-optics–integral-equation approach is used whenever the particle size parameter is too large to allow for a convergence of the T-matrix method.The parameters Rth and AR of our model have been varied between 0.1 and 2 µm and between 0.3 and 3, respectively, and the calculated backscattering coefficient and depolarization were compared with the observed ones. The best agreement was found for Rth between 0.5 and 0.8 µm and for AR less than 0.55 and greater than 1.5.To further constrain the variability of AR within the identified intervals, we have sought an agreement with the experimental data by varying AR on a case-by-case basis and further optimizing the agreement by a proper choice of AR smaller than 0.55 and greater than 1.5 and Rth within the interval 0.5 and 0.8 µm. The ARs identified in this way cluster around the values 0.5 and 2.5.The comparison of the calculations with the measurements is presented and discussed. The results of this work help to set limits to the variability of the dimensions and asphericity of PSC solid particles, within the limits of applicability of our model based on the T-matrix theory of scattering and on assumptions on a common particle shape in a PSD and a common threshold radius for all the PSDs. 
    more » « less
  4. A bstract Measurements of elliptic ( v 2 ) and triangular ( v 3 ) flow coefficients of π ± , K ± , p+ $$ \overline{\mathrm{p}} $$ p ¯ , $$ {\mathrm{K}}_{\mathrm{S}}^0 $$ K S 0 , and Λ+ $$ \overline{\Lambda} $$ Λ ¯ obtained with the scalar product method in Xe-Xe collisions at $$ \sqrt{s_{\mathrm{NN}}} $$ s NN = 5 . 44 TeV are presented. The results are obtained in the rapidity range | y | < 0 . 5 and reported as a function of transverse momentum, p T , for several collision centrality classes. The flow coefficients exhibit a particle mass dependence for p T < 3 GeV/ c , while a grouping according to particle type (i.e., meson and baryon) is found at intermediate transverse momenta (3 < p T < 8 GeV/ c ). The magnitude of the baryon v 2 is larger than that of mesons up to p T = 6 GeV/ c . The centrality dependence of the shape evolution of the p T -differential v 2 is studied for the various hadron species. The v 2 coefficients of π ± , K ± , and p+ $$ \overline{\mathrm{p}} $$ p ¯ are reproduced by MUSIC hydrodynamic calculations coupled to a hadronic cascade model (UrQMD) for p T < 1 GeV/ c . A comparison with v n measurements in the corresponding centrality intervals in Pb-Pb collisions at $$ \sqrt{s_{\mathrm{NN}}} $$ s NN = 5 . 02 TeV yields an enhanced v 2 in central collisions and diminished value in semicentral collisions. 
    more » « less
  5. A<sc>bstract</sc> Long- and short-range correlations for pairs of charged particles are studied via two-particle angular correlations in pp collisions at$$ \sqrt{s} $$ s = 13 TeV and p–Pb collisions at$$ \sqrt{s_{\textrm{NN}}} $$ s NN = 5.02 TeV. The correlation functions are measured as a function of relative azimuthal angle ∆φand pseudorapidity separation ∆ηfor pairs of primary charged particles within the pseudorapidity interval |η|<0.9 and the transverse-momentum interval 1< pT<4 GeV/c. Flow coefficients are extracted for the long-range correlations (1.6<|∆η|<1.8) in various high-multiplicity event classes using the low-multiplicity template fit method. The method is used to subtract the enhanced yield of away-side jet fragments in high-multiplicity events. These results show decreasing flow signals toward lower multiplicity events. Furthermore, the flow coefficients for events with hard probes, such as jets or leading particles, do not exhibit any significant changes compared to those obtained from high-multiplicity events without any specific event selection criteria. The results are compared with hydrodynamic-model calculations, and it is found that a better understanding of the initial conditions is necessary to describe the results, particularly for low-multiplicity events. 
    more » « less