A<sc>bstract</sc> Correlations in azimuthal angle extending over a long range in pseudorapidity between particles, usually called the “ridge” phenomenon, were discovered in heavy-ion collisions, and later found in pp and p–Pb collisions. In large systems, they are thought to arise from the expansion (collective flow) of the produced particles. Extending these measurements over a wider range in pseudorapidity and final-state particle multiplicity is important to understand better the origin of these long-range correlations in small collision systems. In this Letter, measurements of the long-range correlations in p–Pb collisions at$$ \sqrt{s_{\textrm{NN}}} $$ = 5.02 TeV are extended to a pseudorapidity gap of ∆η~ 8 between particles using the ALICE forward multiplicity detectors. After suppressing non-flow correlations, e.g., from jet and resonance decays, the ridge structure is observed to persist up to a very large gap of ∆η~ 8 for the first time in p–Pb collisions. This shows that the collective flow-like correlations extend over an extensive pseudorapidity range also in small collision systems such as p–Pb collisions. The pseudorapidity dependence of the second-order anisotropic flow coefficient,v2(η), is extracted from the long-range correlations. Thev2(η) results are presented for a wide pseudorapidity range of –3.1< η <4.8 in various centrality classes in p–Pb collisions. To gain a comprehensive understanding of the source of anisotropic flow in small collision systems, thev2(η) measurements are compared with hydrodynamic and transport model calculations. The comparison suggests that the final-state interactions play a dominant role in developing the anisotropic flow in small collision systems.
more »
« less
Multiplicity and event-scale dependent flow and jet fragmentation in pp collisions at $$ \sqrt{s} $$ = 13 TeV and in p–Pb collisions at $$ \sqrt{s_{\textrm{NN}}} $$ = 5.02 TeV
A<sc>bstract</sc> Long- and short-range correlations for pairs of charged particles are studied via two-particle angular correlations in pp collisions at$$ \sqrt{s} $$ = 13 TeV and p–Pb collisions at$$ \sqrt{s_{\textrm{NN}}} $$ = 5.02 TeV. The correlation functions are measured as a function of relative azimuthal angle ∆φand pseudorapidity separation ∆ηfor pairs of primary charged particles within the pseudorapidity interval |η|<0.9 and the transverse-momentum interval 1< pT<4 GeV/c. Flow coefficients are extracted for the long-range correlations (1.6<|∆η|<1.8) in various high-multiplicity event classes using the low-multiplicity template fit method. The method is used to subtract the enhanced yield of away-side jet fragments in high-multiplicity events. These results show decreasing flow signals toward lower multiplicity events. Furthermore, the flow coefficients for events with hard probes, such as jets or leading particles, do not exhibit any significant changes compared to those obtained from high-multiplicity events without any specific event selection criteria. The results are compared with hydrodynamic-model calculations, and it is found that a better understanding of the initial conditions is necessary to describe the results, particularly for low-multiplicity events.
more »
« less
- PAR ID:
- 10514245
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- link.springer.com
- Date Published:
- Journal Name:
- Journal of High Energy Physics
- Volume:
- 2024
- Issue:
- 3
- ISSN:
- 1029-8479
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract A study of multiplicity and pseudorapidity distributions of inclusive photons measured in pp and p–Pb collisions at a center-of-mass energy per nucleon–nucleon collision of$$\sqrt{s_{\textrm{NN}}}~=~5.02$$ TeV using the ALICE detector in the forward pseudorapidity region 2.3 $$<~\eta _\textrm{lab} ~<$$ 3.9 is presented. Measurements in p–Pb collisions are reported for two beam configurations in which the directions of the proton and lead ion beam were reversed. The pseudorapidity distributions in p–Pb collisions are obtained for seven centrality classes which are defined based on different event activity estimators, i.e., the charged-particle multiplicity measured at midrapidity as well as the energy deposited in a calorimeter at beam rapidity. The inclusive photon multiplicity distributions for both pp and p–Pb collisions are described by double negative binomial distributions. The pseudorapidity distributions of inclusive photons are compared to those of charged particles at midrapidity in pp collisions and for different centrality classes in p–Pb collisions. The results are compared to predictions from various Monte Carlo event generators. None of the generators considered in this paper reproduces the inclusive photon multiplicity distributions in the reported multiplicity range. The pseudorapidity distributions are, however, better described by the same generators.more » « less
-
A<sc>bstract</sc> Measurements of the charge-dependent two-particle angular correlation function in proton-lead (pPb) collisions at a nucleon-nucleon center-of-mass energy of$$ \sqrt{s_{\textrm{NN}}} $$ = 8.16 TeV and lead-lead (PbPb) collisions at$$ \sqrt{s_{\textrm{NN}}} $$ = 5.02 TeV are reported. The pPb and PbPb data sets correspond to integrated luminosities of 186 nb−1and 0.607 nb−1, respectively, and were collected using the CMS detector at the CERN LHC. The charge-dependent correlations are characterized by balance functions of same- and opposite-sign particle pairs. The balance functions, which contain information about the creation time of charged particle pairs and the development of collectivity, are studied as functions of relative pseudorapidity (∆η) and relative azimuthal angle (∆ϕ), for various multiplicity and transverse momentum (pT) intervals. A multiplicity dependence of the balance function is observed in ∆ηand ∆ϕfor both systems. The width of the balance functions decreases towards high-multiplicity collisions in the momentum region<2 GeV, for pPb and PbPb results. Integrals of the balance functions are presented in both systems, and a mild dependence of the charge-balancing fractions on multiplicity is observed. No multiplicity dependence is observed at higher transverse momentum. The data are compared withhydjet,hijing, andamptgenerator predictions, none of which capture completely the multiplicity dependence seen in the data. The comparison of results with different center-of-mass energies suggests that the balance functions become narrower at higher energies, which is consistent with the idea of delayed hadronization and the effect of radial flow.more » « less
-
A<sc>bstract</sc> Short-range correlations between charged particles are studied via two-particle angular correlations in pp collisions at$$ \sqrt{s} $$ = 13 TeV. The correlation functions are measured as a function of the relative azimuthal angle ∆φand the pseudorapidity separation ∆ηfor pairs of primary charged particles within the pseudorapidity interval |η|<0.9 and the transverse-momentum range 1< pT<8 GeV/c. Near-side (|∆φ|<1.3) peak widths are extracted from a generalised Gaussian fitted over the correlations in full pseudorapidity separation (|∆η|<1.8), while the per-trigger associated near-side yields are extracted for the short-range correlations (|∆η|<1.3). Both are evaluated as a function of charged-particle multiplicity obtained by two different event activity estimators. The width of the near-side peak decreases with increasing multiplicity, and this trend is reproduced qualitatively by the Monte Carlo event generators PYTHIA 8, AMPT, and EPOS. However, the models overestimate the width in the low transverse-momentum region (pT<3 GeV/c). The per-trigger associated near-side yield increases with increasing multiplicity. Although this trend is also captured qualitatively by the considered event generators, the yield is mostly overestimated by the models in the considered kinematic range. The measurement of the shape and yield of the short-range correlation peak can help us understand the interplay between jet fragmentation and event activity, quantify the narrowing trend of the near-side peak as a function of transverse momentum and multiplicity selections in pp collisions, and search for final-state jet modification in small collision systems.more » « less
-
Abstract The azimuthal ($$\Delta \varphi $$ ) correlation distributions between heavy-flavor decay electrons and associated charged particles are measured in pp and p–Pb collisions at$$\sqrt{s_{\mathrm{{NN}}}} = 5.02$$ TeV. Results are reported for electrons with transverse momentum$$4<16$$ $$\textrm{GeV}/c$$ and pseudorapidity$$|\eta |<0.6$$ . The associated charged particles are selected with transverse momentum$$1<7$$ $$\textrm{GeV}/c$$ , and relative pseudorapidity separation with the leading electron$$|\Delta \eta | < 1$$ . The correlation measurements are performed to study and characterize the fragmentation and hadronization of heavy quarks. The correlation structures are fitted with a constant and two von Mises functions to obtain the baseline and the near- and away-side peaks, respectively. The results from p–Pb collisions are compared with those from pp collisions to study the effects of cold nuclear matter. In the measured trigger electron and associated particle kinematic regions, the two collision systems give consistent results. The$$\Delta \varphi $$ distribution and the peak observables in pp and p–Pb collisions are compared with calculations from various Monte Carlo event generators.more » « less
An official website of the United States government

