skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Way to Interact with the World: Complex and Diverse Spatiotemporal Cell Wall Thickenings in Plant Roots
Plant cells are defined by their walls, which, in addition to providing structural support and shape, are an integral component of the nonliving extracellular space called the apoplast. Cell wall thickenings are present in many different root cell types. They come in a variety of simple and more complex structures with varying composition of lignin and suberin and can change in response to environmental stressors. The majority of these root cell wall thickenings and cell types that contain them are absent in the model plantArabidopsis thalianadespite being present in most plant species. As a result, we know very little regarding their developmental control and function. Increasing evidence suggests that these structures are critical for responding to and facilitating adaptation to a wide array of stresses that a plant root experiences. These structures function in blocking apoplastic transport, oxygen, and water loss and enhancing root penetrative strength. In this review, we describe the most common types of cell wall thickenings in the outer cell types of plant roots—the velamen, exodermal thickenings, the sclerenchyma, and phi thickenings. Their cell-type dependency, morphology, composition, environmental responsiveness, and genetic control in vascular plants are discussed, as well as their potential to generate more stress-resilient roots in the face of a changing climate.  more » « less
Award ID(s):
2118017 2119820
PAR ID:
10587587
Author(s) / Creator(s):
; ;
Publisher / Repository:
Annual Reviews of Plant Biology
Date Published:
Journal Name:
Annual Review of Plant Biology
ISSN:
1543-5008
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Multicellular organisms control environmental interactions through specialized barriers in specific cell types. A conserved barrier in plant roots is the endodermal Casparian strip (CS), a ring-like structure made of polymerized lignin that seals the endodermal apoplastic space. Most angiosperms have another root cell type, the exodermis, that is reported to form a barrier. Our understanding of exodermal developmental and molecular regulation and function is limited as this cell type is absent fromArabidopsis thaliana. We demonstrate that in tomato (Solanum lycopersicum), the exodermis does not form a CS. Instead, it forms a polar lignin cap (PLC) with equivalent barrier function to the endodermal CS but distinct genetic control. Repression of the exodermal PLC in inner cortical layers is conferred by theSlSCZandSlEXO1transcription factors, and these two factors genetically interact to control its polar deposition. Several target genes that act downstream ofSlSCZandSlEXO1in the exodermis are identified. Although the exodermis and endodermis produce barriers that restrict mineral ion uptake, the exodermal PLC is unable to fully compensate for the lack of a CS. The presence of distinct lignin structures acting as apoplastic barriers has exciting implications for a root’s response to abiotic and biotic stimuli. 
    more » « less
  2. Abstract Plant microbiomes depend on environmental conditions, stochasticity, host species, and genotype identity. Eelgrass (Zostera marina)is a unique system for plant–microbe interactions as a marine angiosperm growing in a physiologically-challenging environment with anoxic sediment, periodic exposure to air at low tide, and fluctuations in water clarity and flow. We tested the influence of host origin versus environment on eelgrass microbiome composition by transplanting 768 plants among four sites within Bodega Harbor, CA. Over three months following transplantation, we sampled microbial communities monthly on leaves and roots and sequenced the V4–V5 region of the 16S rRNA gene to assess community composition. The main driver of leaf and root microbiome composition was destination site; more modest effects of host origin site did not last longer than one month. Community phylogenetic analyses suggested that environmental filtering structures these communities, but the strength and nature of this filtering varies among sites and over time and roots and leaves show opposing gradients in clustering along a temperature gradient. We demonstrate that local environmental differences create rapid shifts in associated microbial community composition with potential functional implications for rapid host acclimation under shifting environmental conditions. 
    more » « less
  3. Abstract BackgroundArbuscular mycorrhizal fungi (AMF) are beneficial root symbionts contributing to improved plant growth and development and resistance to abiotic and biotic stresses. Commercial bioinoculants containing AMF are widely considered as an alternative to agrochemicals in vineyards. However, their effects on grapevine plants grown in soil containing native communities of AMF are still poorly understood. In a greenhouse experiment, we evaluated the influence of five different bioinoculants on the composition of native AMF communities of young Cabernet Sauvignon vines grown in a non-sterile soil. Root colonization, leaf nitrogen concentration, plant biomass and root morphology were assessed, and AMF communities of inoculated and non-inoculated grapevine roots were profiled using high-throughput sequencing. ResultsContrary to our predictions, no differences in the microbiome of plants exposed to native AMF communities versus commercial AMF bioinoculants + native AMF communities were detected in roots. However, inoculation induced positive changes in root traits as well as increased AMF colonization, plant biomass, and leaf nitrogen. Most of these desirable functional traits were positively correlated with the relative abundance of operational taxonomic units identified asGlomus,RhizophagusandClaroideoglomusgenera. ConclusionThese results suggest synergistic interactions between commercial AMF bioinoculants and native AMF communities of roots to promote grapevine growth. Long-term studies with further genomics, metabolomics and physiological research are needed to provide a deeper understanding of the symbiotic interaction among grapevine roots, bioinoculants and natural AMF communities and their role to promote plant adaptation to current environmental concerns. 
    more » « less
  4. SUMMARY The conservation of GOLVEN (GLV)/ROOT MERISTEM GROWTH FACTOR (RGF) peptide encoding genes across plant genomes capable of forming roots or root‐like structures underscores their potential significance in the terrestrial adaptation of plants. This study investigates the function and role of GOLVEN peptide‐coding genes inMedicago truncatula. Five out of fifteen GLV/RGF genes were notably upregulated during nodule organogenesis and were differentially responsive to nitrogen deficiency and auxin treatment. Specifically, the expression ofMtGLV9andMtGLV10at nodule initiation sites was contingent upon the NODULE INCEPTION transcription factor. Overexpression of these five nodule‐induced GLV genes in hairy roots ofM. truncatulaand application of their synthetic peptide analogues led to a decrease in nodule count by 25–50%. Uniquely, the GOLVEN10 peptide altered the positioning of the first formed lateral root and nodule on the primary root axis, an observation we term ‘noduletaxis’; this decreased the length of the lateral organ formation zone on roots. Histological section of roots treated with synthetic GOLVEN10 peptide revealed an increased cell number within the root cortical cell layers without a corresponding increase in cell length, leading to an elongation of the root likely introducing a spatiotemporal delay in organ formation. At the transcription level, the GOLVEN10 peptide suppressed expression of microtubule‐related genes and exerted its effects by changing expression of a large subset of Auxin responsive genes. These findings advance our understanding of the molecular mechanisms by which GOLVEN peptides modulate root morphology, nodule ontogeny, and interactions with key transcriptional pathways. 
    more » « less
  5. Abstract AimRoots and rhizospheres host diverse microbial communities that can influence the fitness, phenotypes, and environmental tolerances of plants. Documenting the biogeography of these microbiomes can detect the potential for a changing environment to disrupt host‐microbe interactions, particularly in cases where microbes buffer hosts against abiotic stressors. We evaluated whether root‐associated fungi had poleward declines in diversity, tested whether fungal communities in roots shifted near host plant range edges, and determined the relative importance of environmental and host predictors of root fungal community structure. LocationNorth American plains grasslands. TaxonFoundation grasses –Andropogon gerardii, Bouteloua dactyloides, B. eriopoda, B. gracilis,andSchizachyrium scopariumand root fungi. MethodsAt each of 24 sites representing three replicate 17°–latitudinal gradients, we collected roots from 12 individuals per species along five transects spaced 10 m apart (40 m × 40 m grid). We used next‐generation sequencing of ITS2, direct fungal culturing from roots, and microscopy to survey fungi associated with grass roots. ResultsRoot‐associated fungi did not follow the poleward declines in diversity documented for many animals and plants. Instead, host plant identity had the largest influence on fungal community structure. Edaphic factors outranked climate or host plant traits as correlates of fungal community structure; however, the relative importance of environmental predictors differed among plant species. As sampling approached host species range edges, fungal composition converged in similarity among individual plants of each grass species. Main conclusionsEnvironmental predictors of root‐associated fungi depended strongly on host plant species identity. Biogeographic patterns in fungal composition suggested a homogenizing influence of stressors at host plant range limits. Results predict that communities of non‐mycorrhizal, root‐associated fungi in the North American plains will be more sensitive to future changes in host plant ranges and edaphic factors than to the direct effects of climate. 
    more » « less