This review focuses on photocyclization reactions involving alkenes and arenes. Photochemistry opens up synthetic opportunities difficult for thermal methods, using light as a versatile tool to convert stable ground-state molecules into their reactive excited counterparts. This difference can be particularly striking for aromatic molecules, which, according to Baird’s rule, transform from highly stable entities into their antiaromatic “evil twins”. We highlight classical reactions, such as the photocyclization of stilbenes, to show how alkenes and aromatic rings can undergo intramolecular cyclizations to form complex structures. When possible, we explain how antiaromaticity develops in excited states and how this can expand synthetic possibilities. The review also examines how factors such as oxidants, substituents, and reaction conditions influence product selectivity, providing useful insights for improving reaction outcomes and demonstrating how photochemical methods can drive the development of new synthetic strategies.
more »
« less
Assembly of Pyrenes through a Quadruple Photochemical Cascade: Blocking Groups Allow Diversion from the Double Mallory Path to Photocyclization at the Bay Region
We present a six-step cascade that converts 1,3-distyrylbenzenes (bis-stilbenes) into nonsymmetric pyrenes in 40–60% yields. This sequence merges photochemical steps, E,Z-alkene isomerization, a 6π photochemical electrocyclization (Mallory photocyclization); the new bay region cyclization, with two radical iodine-mediated aromatization steps; and an optional aryl migration. This work illustrates how the inherent challenges of engineering excited state reactivity can be addressed by logical design. An unusual aspect of this cascade is that the same photochemical process (the Mallory reaction) is first promoted and then blocked in different stages within a photochemical cascade. The use of blocking groups is the key feature that makes simple bis-stilbenes suitable substrates for directed double cyclization. While the first stilbene subunit undergoes a classic Mallory photocyclization to form a phenanthrene intermediate, the next ring-forming step is diverted from the conventional Mallory path into a photocyclization of the remaining alkene at the phenanthrene’s bay region. Although earlier literature suggested that this reaction is unfavorable, we achieved this diversion via incorporation of blocking groups to prevent the Mallory photocyclization. The two photocyclizations are assisted by the relief of the excited state antiaromaticity. Reaction selectivity is controlled by substituent effects and the interplay between photochemical and radical reactivity. Furthermore, the introduction of donor substituents at the pendant styrene group can further extend this photochemical cascade through a radical 1,2-aryl migration. Rich photophysical and supramolecular properties of the newly substituted pyrenes illustrate the role of systematic variations in the structure of this classic chromophore for excited state engineering.
more »
« less
- Award ID(s):
- 2102579
- PAR ID:
- 10587672
- Publisher / Repository:
- ACS
- Date Published:
- Journal Name:
- Journal of the American Chemical Society
- Volume:
- 147
- Issue:
- 1
- ISSN:
- 0002-7863
- Page Range / eLocation ID:
- 1074 to 1091
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract An alkoxycarbonyl radical cyclization–cross‐coupling cascade has been developed that allows functionalized γ‐butyrolactones to be prepared in one step from simple tertiary alcohol‐derived homoallylic oxalate precursors. The reaction succeeds with aryl and vinyl electrophiles and is compatible with heterocyclic fragments in both coupling partners. This chemistry allows for the rapid construction of spirolactones, which are of interest in drug discovery endeavors.more » « less
-
Abstract Over the past 50 years, a principal approach to controlling conventional photochemical reactions has relied on imposing geometric constraints on reactant or transition state via conducting photochemistry in the organized or constraining media. Herein, we describe a fundamentally different approach to affect the course of photochemical reactions (photochemical rearrangements) by utilizing spatially selective excitation of specific electronic transitions with plane‐polarized light in the reactant molecules uniformly aligned in the nematic liquid crystal phase. In particular, we focused on the Type B enone rearrangement of 4,4‐diarylcyclohexenones – one of the most common photochemical rearrangements. We demonstrated that the aryl migratory aptitude in this reaction was attenuated in response to changing an angle between the polarization plane of the incident light and the alignment direction of the nematic liquid crystal, with the enhanced aryl migration achieved when the polarization plane coincided with the transition dipole moment leading to the excited state responsible for this migration. The spatially‐selective initial excitation therefore was overruling the electronic factors responsible for the relative ratio of the two alternative photoproducts. The experimental findings were further supported by the results of a computational study. This work showcases a new fundamental paradigm in controlling photochemical reactivity and selectivity of photoreactions.more » « less
-
Abstract A method to rapidly diversify the molecules formed in organic crystals is introduced, with aryl nitriles playing a novel dual role as both hydrogen‐bond acceptors and modifiable organic groups. The discovery of coexisting supramolecular synthons in the same crystal is also described. The general concept is demonstrated by using a bis(aryl nitrile) alkene that undergoes a hydrogen‐bond‐directed intermolecular [2+2] photodimerization to form a tetra(aryl nitrile)cyclobutane. The product is readily converted by click reactivity to a tetra(aryl tetrazole) and by hydrolysis to a tetra(aryl carboxylic acid). The integration of aryl nitriles into solid‐state reactions opens broad avenues to post‐modify products formed in crystalline solids for rapid diversification.more » « less
-
This study provides a comprehensive mechanistic understanding of asymmetric THF α-O-arylation via Ni photochemical catalysis, leveraging enantioinduction data to refine the reaction pathway. Originally reported in a racemic fashion by Molander and Doyle, this transformation was re-examined using chiral bis(oxazoline) ligands, revealing distinct enantioselectivity trends depending on the halogen present in the aryl halide and Ni pre-catalyst. Stoichiometric experiments demonstrated that the Ni(II) oxidative addition complex is primarily responsible for trapping the THF radical, while multivariate linear regression modeling confirmed that the halide remains coordinated during the enantiodetermining step. Time-course experiments uncovered an alternative initial pathway when Ni(0) was used as the pre-catalyst, which ultimately converged to the main Ni(II) pathway. EPR analysis further revealed rapid comproportionation between Ni(0) and Ni(II), forming Ni(I) species that engage in radical trapping at early stages, accounting for the observed reactivity differences. By integrating enantioselectivity data with experimental techniques such as EPR spectroscopy, this study establishes enantioinduction analysis as a powerful tool for mechanistic investigations in Ni photochemical catalysis. The insights gained not only refine our understanding of this transformation, but also provide a framework for probing similar Ni/Ir dual photocatalytic systems.more » « less
An official website of the United States government

