Abstract The many applications of photon upconversion—conversion of low‐energy photons into high‐energy photons—raises the question of the possibility of “electron upconversion”. In this Review, we illustrate how the reduction potential can be increased by using the free energy of exergonic chemical reactions. Electron (reductant) upconversion can produce up to 20–25 kcal mol−1of additional redox potential, thus creating powerful reductants under mild conditions. We will present the two common types of electron‐upconverting systems—dissociative (based on unimolecular fragmentations) and associative (based on the bimolecular formation of three‐electron bonds). The possible utility of reductant upconversion encompasses redox chain reactions in electrocatalytic processes, photoredox cascades, design of peroxide‐based medicines, firefly luminescence, and reductive repair of DNA photodamage.
more »
« less
The Photoredox Paradox: Electron and Hole Upconversion as the Hidden Secrets of Photoredox Catalysis
Although photoredox catalysis is complex from a mechanistic point of view, it is also often surprisingly efficient. In fact, the quantum efficiency of a puzzlingly large portion of photoredox reactions exceeds 100% (i.e., the measured quantum yields (QYs) are >1). Hence, these photoredox reactions can be more than perfect with respect to photon utilization. In several documented cases, a single absorbed photon can lead to the formation of >100 molecules of the product, behavior known to originate from chain processes. In this Perspective, we explore the underlying reasons for this efficiency, identify the nature of common catalytic chains, and highlight the differences between HAT and SET chains. Our goal is to show why chains are especially important in photoredox catalysis and where the thermodynamic driving force that sustains the SET catalytic cycles comes from. We demonstrate how the interplay of polar and radical processes can activate hidden catalytic pathways mediated by electron and hole transfer (i.e., electron and hole catalysis). Furthermore, we illustrate how the phenomenon of redox upconversion serves as a thermodynamic precondition for electron and hole catalysis. After discussing representative mechanistic puzzles, we analyze the most common bond forming steps, where redox upconversion frequently occurs (and is sometimes unavoidable). In particular, we highlight the importance of 2-center-3-electron bonds as a recurring motif that allows a rational chemical approach to the design of redox upconversion processes.
more »
« less
- Award ID(s):
- 2102579
- PAR ID:
- 10587673
- Publisher / Repository:
- ACS
- Date Published:
- Journal Name:
- Journal of the American Chemical Society
- Volume:
- 146
- Issue:
- 40
- ISSN:
- 0002-7863
- Page Range / eLocation ID:
- 27233 to 27254
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Photoredox catalysis driven by visible light has improved chemical synthesis by enabling milder reaction conditions and unlocking distinct reaction mechanisms. Despite the transformative impact, visible-light photoredox catalysis remains constrained by the thermodynamic limits of photon energy and inefficiencies arising from unproductive back electron transfer, both of which become particularly pronounced in thermodynamically demanding reactions. In this work, we introduce an organic photoredox catalyst system that overcomes these obstacles to drive chemical transformations that require super-reducing capabilities. This advancement is accomplished by coupling the energy of two photons into a single chemical reduction, whereas inefficiencies from back electron transfer are mitigated through a distinct proton-coupled electron transfer mechanism embedded in the catalyst design. The super-reducing capabilities of this organic catalyst system are demonstrated through efficient application in a broad scope of challenging arene reductions.more » « less
-
The use of visible light to enable small molecule synthesis has grown substantially over the last 15 years. While much of the focus has been on the development of new methods, mechanistic and kinetic studies can provide valuable information about reaction steps and highlight directions for optimization and new methods. This review focuses on reports of visible light, homogenous photoredox reactions that emphasize direct observation of reaction intermediates and/or contain a significant focus on mechanistic and kinetic studies. How these types of studies can improve reaction yields and rates are highlighted. Finally, reaction quantum yields for over 200 photoredox reactions are summarized for the first time. This often-neglected reaction parameter provides valuable insights into the efficiency of photoredox reactions as well as the clues to the underlying mechanism.more » « less
-
The rapid development of light-activated organic photoredox catalysts has led to the proliferation of powerful synthetic chemical strategies with industrial and pharmaceutical applications. Despite the advancement in synthetic approaches, a detailed understanding of the mechanisms governing these reactions has lagged. Time-resolved optical spectroscopy provides a method to track organic photoredox catalysis processes and reveal the energy pathways that drive reaction mechanisms. These measurements are sensitive to key processes in organic photoredox catalysis such as charge or energy transfer, lifetimes of singlet or triplet states, and solvation dynamics. The sensitivity and specificity of ultrafast spectroscopic measurements can provide a new perspective on the mechanisms of these reactions, including electron-transfer events, the role of solvent, and the short lifetimes of radical intermediates.more » « less
-
Photoredox catalysis has been prominent in many applications, including solar fuels, organic synthesis, and polymer chemistry. Photocatalytic activity directly depends on the photophysical and electrochemical properties of photocatalysts in both the ground state and excited state. Controlling those properties, therefore, is imperative to achieve the desired photocatalytic activity. Redox potential is one important factor that impacts both the thermodynamic and kinetic aspects of key elementary steps in photoredox catalysis. In many challenging reactions in organic synthesis, high redox potentials of the substrates hamper the reaction, leading to slow conversion. Thus, the development of photocatalysts with extreme redox potentials, accompanied by potent reducing or oxidizing power, is required to execute high-yielding thermodynamically demanding reactions. In this review, we will introduce strategies for accessing extreme redox potentials in photocatalytic transformations. These include molecular design strategies for preparing photosensitizers that are exceptionally strong ground-state or excited-state reductants or oxidants, highlighting both organic and metal-based photosensitizers. We also outline methodological approaches for accessing extreme redox potentials, using two-photon activation, or combined electrochemical/photochemical strategies to generate potent redox reagents from precursors that have milder potentials.more » « less
An official website of the United States government

