Abstract Photoredox catalysis has proven to be a powerful tool in synthetic organic chemistry. The rational design of photosensitizers with improved photocatalytic performance constitutes a major advancement in photoredox organic transformations. This review summarizes the fundamental ground-state and excited-state photophysical and electrochemical attributes of molecular photosensitizers, which are important determinants of their photocatalytic reactivity.
more »
« less
Strategies for accessing photosensitizers with extreme redox potentials
Photoredox catalysis has been prominent in many applications, including solar fuels, organic synthesis, and polymer chemistry. Photocatalytic activity directly depends on the photophysical and electrochemical properties of photocatalysts in both the ground state and excited state. Controlling those properties, therefore, is imperative to achieve the desired photocatalytic activity. Redox potential is one important factor that impacts both the thermodynamic and kinetic aspects of key elementary steps in photoredox catalysis. In many challenging reactions in organic synthesis, high redox potentials of the substrates hamper the reaction, leading to slow conversion. Thus, the development of photocatalysts with extreme redox potentials, accompanied by potent reducing or oxidizing power, is required to execute high-yielding thermodynamically demanding reactions. In this review, we will introduce strategies for accessing extreme redox potentials in photocatalytic transformations. These include molecular design strategies for preparing photosensitizers that are exceptionally strong ground-state or excited-state reductants or oxidants, highlighting both organic and metal-based photosensitizers. We also outline methodological approaches for accessing extreme redox potentials, using two-photon activation, or combined electrochemical/photochemical strategies to generate potent redox reagents from precursors that have milder potentials.
more »
« less
- Award ID(s):
- 1846831
- PAR ID:
- 10399466
- Date Published:
- Journal Name:
- Chemical Physics Reviews
- Volume:
- 3
- Issue:
- 2
- ISSN:
- 2688-4070
- Page Range / eLocation ID:
- 021302
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The field of sustainable heterogeneous catalysis is evolving rapidly, with a strong emphasis on developing catalysts that enhance efficiency. Among various heterogeneous photocatalysts, metal‐organic frameworks (MOFs) have gained significant attention for their exceptional performance in photocatalytic reactions. In this context, contrary to the conventional homogeneous iridium or ruthenium‐based photocatalysts, which face significant challenges in terms of availability, cost, scalability, and recyclability, a new Ba/Ti MOF (ACM‐4) is developed as a heterogeneous catalyst that can mimic/outperform the conventional photocatalysts, offering a more sustainable solution for efficient chemical processes. Its redox potential and triplet energy are comparable to or higher than the conventional catalysts, organic dyes, and metal semiconductors, enabling its use in both electron transfer and energy transfer applications. It facilitates a broad range of coupling reactions involving pharmaceuticals, agrochemicals, and natural products, and is compatible with various transition metals such as nickel, copper, cobalt, and palladium as co‐catalysts. The effectiveness of theACM‐4as a photocatalyst is supported by comprehensive material studies, photophysical, and recycling experiments. These significant findings underscore the potential ofACM‐4as a highly versatile and cost‐effective photoredox catalyst, providing a sustainable, one‐material solution for efficient chemical processes.more » « less
-
In this work, a series of eight similarly structured perinone chromophores were synthesized and photophysically characterized to elucidate the electronic and structural tunability of their excited state properties, including excited state redox potentials and fluorescence lifetimes/quantum yields. Despite their similar structure, these chromophores exhibited a broad range of visible absorption properties, quantum yields, and excited state lifetimes. In conjunction with static and time-resolved spectroscopies from the ultrafast to nanosecond time regimes, time-dependent computational modeling was used to correlate this behavior to the relationship between non-radiative decay and the energy-gap law. Additionally, the ground and excited state redox potentials were calculated and found to be tunable over a range of 1 V depending on the diamine or anhydride used in their synthesis ( E red * = 0.45–1.55 V; E ox * = −0.88 to −1.67 V), which is difficult to achieve with typical photoredox-active transition metal complexes. These diverse chromophores can be easily prepared, and with their range of photophysical tunability, will be valuable for future use in photofunctional applications.more » « less
-
Abstract The development of tunable organic photoredox catalysts remains important in the field of photoredox catalysis. A highly modular and tunable family of trianguleniums (azadioxatriangulenium, diazaoxatriangulenium, and triazatriangulenium), and the related [4]helicene quinacridinium have been used as organic photoredox catalysts for photoreductions and photooxidations under visible light irradiation (λ = 518–640 nm). A highlight of this family of photoredox catalysts is their readily tunable redox properties, leading to different reactivities. We report their use as photocatalysts for the aerobic oxidative hydroxylation of arylboronic acids and the aerobic cross-dehydrogenative coupling reaction of N-phenyl-1,2,3,5-tetrahydroisoquinoline with nitromethane through reductive quenching. Furthermore, their potential as photoreduction catalysts has been demonstrated through the catalysis of an intermolecular atom-transfer radical addition via oxidative quenching. These transformations serve as benchmarks to highlight that the easily synthesized trianguleniums, congeners of the acridiniums, are versatile organic photoredox catalysts with applications in both photooxidations and photoreductions.more » « less
An official website of the United States government

