skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A SAXS-based approach to rationally evaluate radical scavengers – toward eliminating radiation damage in solution and crystallographic studies
X-ray-based techniques are a powerful tool in structural biology but the radiation-induced chemistry that results can be detrimental and may mask an accurate structural understanding. In the crystallographic case, cryocooling has been employed as a successful mitigation strategy but also has its limitations including the trapping of non-biological structural states. Crystallographic and solution studies performed at physiological temperatures can reveal otherwise hidden but relevant conformations, but are limited by their increased susceptibility to radiation damage. In this case, chemical additives that scavenge the species generated by radiation can mitigate damage but are not always successful and the mechanisms are often unclear. Using a protein designed to undergo a large-scale structural change from breakage of a disulfide bond, radiation damage can be monitored with small-angle X-ray scattering. Using this, we have quantitatively evaluated how three scavengers commonly used in crystallographic experiments – sodium nitrate, cysteine, and ascorbic acid – perform in solution at 10°C. Sodium nitrate was the most effective scavenger and completely inhibited fragmentation of the disulfide bond at a lower concentration (500 µM) compared with cysteine (∼5 mM) while ascorbic acid performed best at 5 mMbut could only reduce fragmentation by ∼75% after a total accumulated dose of 792 Gy. The relative effectiveness of each scavenger matches their reported affinities for solvated electrons. Saturating concentrations of each scavenger shifted fragmentation from first order to a zeroth-order process, perhaps indicating the direct contribution of photoabsorption. The SAXS-based method can detect damage at X-ray doses far lower than those accessible crystallographically, thereby providing a detailed picture of scavenger processes. The solution results are also in close agreement with what is known about scavenger performance and mechanism in a crystallographic setting and suggest that a link can be made between the damage phenomenon in the two scenarios. Therefore, our engineered approach might provide a platform for more systematic and comprehensive screening of radioprotectants that can directly inform mitigation strategies for both solution and crystallographic experiments, while also clarifying fundamental radiation damage mechanisms.  more » « less
Award ID(s):
1231306
PAR ID:
10587695
Author(s) / Creator(s):
; ;
Publisher / Repository:
Journal of Synchrotron Radiation
Date Published:
Journal Name:
Journal of Synchrotron Radiation
Volume:
28
Issue:
5
ISSN:
1600-5775
Page Range / eLocation ID:
1309 to 1320
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Boggon, Titus J (Ed.)
    A significant problem in biological X-ray crystallography is the radiation chemistry caused by the incident X-ray beam. This produces both global and site-specific damage. Site specific damage can misdirect the biological interpretation of the structural models produced. Cryo-cooling crystals has been successful in mitigating damage but not eliminating it altogether; however, cryo-cooling can be difficult in some cases and has also been shown to limit functionally relevant protein conformations. The doses used for X-ray crystallography are typically in the kilo-gray to mega-gray range. While disulfide bonds are among the most significantly affected species in proteins in the crystalline state at both cryogenic and higher temperatures, there is limited information on their response to low X-ray doses in solution, the details of which might inform biomedical applications of X-rays. In this work we engineered a protein that dimerizes through a susceptible disulfide bond to relate the radiation damage processes seen in cryo-cooled crystals to those closer to physiologic conditions. This approach enables a low-resolution technique, small angle X-ray scattering (SAXS), to detect and monitor a residue specific process. A dose dependent fragmentation of the engineered protein was seen that can be explained by a dimer to monomer transition through disulfide bond cleavage. This supports the crystallographically derived mechanism and demonstrates that results obtained crystallographically can be usefully extrapolated to physiologic conditions. Fragmentation was influenced by pH and the conformation of the dimer, providing information on mechanism and pointing to future routes for investigation and potential mitigation. The novel engineered protein approach to generate a large-scale change through a site-specific interaction represents a promising tool for advancing radiation damage studies under solution conditions. 
    more » « less
  2. Disulfide bonds are ubiquitous molecular motifs that influence the tertiary structure and biological functions of many proteins. Yet, it is well known that the disulfide bond is photolabile when exposed to ultraviolet C (UVC) radiation. The deep-UV–induced S─S bond fragmentation kinetics on very fast timescales are especially pivotal to fully understand the photostability and photodamage repair mechanisms in proteins. In 1,2-dithiane, the smallest saturated cyclic molecule that mimics biologically active species with S─S bonds, we investigate the photochemistry upon 200-nm excitation by femtosecond time-resolved x-ray scattering in the gas phase using an x-ray free electron laser. In the femtosecond time domain, we find a very fast reaction that generates molecular fragments with one and two sulfur atoms. On picosecond and nanosecond timescales, a complex network of reactions unfolds that, ultimately, completes the sulfur dissociation from the parent molecule. 
    more » « less
  3. Abstract The Sco protein fromThermus thermophilushas previously been shown to perform a disulfide bond reduction in the CuAprotein fromT. thermophilus, which is a soluble protein engineered from subunit II of cytochromeba3oxidase that lacks the transmembrane helix. The native cysteines onTtSco andTtCuAwere mutated to serine residues to probe the reactivities of the individual cysteines. Conjugation of TNB to the remaining cysteine inTtCuAand subsequent release upon incubation with the complementaryTtSco protein demonstrated the formation of the mixed disulfide intermediate. The cysteine ofTtSco that attacks the disulfide bond in the targetTtCuAprotein was determined to beTtSco Cysteine 49. This cysteine is likely more reactive than Cysteine 53 due to a higher degree of solvent exposure. Removal of the metal binding histidine, His 139, does not change MDI formation. However, altering the arginine adjacent to the reactive cysteine in Sco (Arginine 48) does alter the formation of the MDI. Binding of Cu2+or Cu+toTtSco prior to reaction withTtCuAwas found to preclude formation of the mixed disulfide intermediate. These results shed light on a mechanism of disulfide bond reduction by theTtSco protein and may point to a possible role of metal binding in regulating the activity. ImportanceThe function of Sco is at the center of many studies. The disulfide bond reduction in CuAby Sco is investigated herein and the effect of metal ions on the ability to reduce and form a mixed disulfide intermediate are also probed. 
    more » « less
  4. Abstract High-resolution biomacromolecular structure determination is essential to better understand protein function and dynamics. Serial crystallography is an emerging structural biology technique which has fundamental limitations due to either sample volume requirements or immediate access to the competitive X-ray beamtime. Obtaining a high volume of well-diffracting, sufficient-size crystals while mitigating radiation damage remains a critical bottleneck of serial crystallography. As an alternative, we introduce the plate-reader module adapted for using a 72-well Terasaki plate for biomacromolecule structure determination at a convenience of a home X-ray source. We also present the first ambient temperature lysozyme structure determined at the Turkish light source (Turkish DeLight). The complete dataset was collected in 18.5 min with resolution extending to 2.39 Å and 100% completeness. Combined with our previous cryogenic structure (PDB ID: 7Y6A), the ambient temperature structure provides invaluable information about the structural dynamics of the lysozyme.Turkish DeLightprovides robust and rapid ambient temperature biomacromolecular structure determination with limited radiation damage. 
    more » « less
  5. Abstract With the aim of constructing hydrogen‐bonding networks in synthetic complexes, two new ligands derived fromcis,cis‐1,3,5‐triaminocyclohexane (TACH) have been prepared that feature pendant pyrrole or indole rings as outer‐sphere H‐bond donors. The TACH framework offers a facial arrangement of threeN‐donors, thereby mimicking common coordination motifs in the active sites of nonheme Fe and Cu enzymes. X‐ray structural characterization of a series of CuI‐X complexes (X=F, Cl, Br, NCS) revealed that these neutral ligands (H3LR, R=pyrrole or indole) coordinate in the intended facialN3manner, yielding four‐coordinate complexes with idealizedC3symmetry. The N−H units of the outer‐sphere heterocycles form a hydrogen‐bonding cavity around the axial (pseudo)halide ligand, as verified by crystallographic, spectroscopic, and computational analyses. Treatment of H3Lpyrroleand H3Lindolewith divalent transition metal chlorides (MIICl2, M=Fe, Cu, Zn) causes one heterocycle to deprotonate and coordinate to the M(II) center, giving rise to tetradentate ligands with two remaining outer‐sphere H‐bond donors. Further ligand deprotonation is observed upon reaction with Ni(II) and Cu(II) salts with weakly coordinating counteranions. The reported complexes highlight the versatility of TACH‐based ligands with pendant H‐bond donors, as the resulting scaffolds can support multiple protonation states, coordination geometries, and H‐bonding interactions. 
    more » « less