The growing population of older adults emphasizes the need to develop interventions that prevent or delay some of the cognitive decline that accompanies aging. In particular, as memory impairment is the foremost cognitive deficit affecting older adults, it is vital to develop interventions that improve memory function. This study addressed the problem of false memories in aging by training older adults to use details of past events during memory retrieval to distinguish targets from related lures. We examined the neural basis of a retrieval-based monitoring strategy by assessing changes in univariate BOLD activity and discriminability of targets and lures pre and post training. Results showed training-related decreases in false memory rates with no alterations to hit rates. Both training and practice were associated with altered recruitment of a frontoparietal monitoring network as well as benefits to neural discriminability within network regions. Participants with lower baseline neural discriminability between target and lure items exhibited the largest changes in neural discriminability. Collectively, our results highlight the benefits of training for reductions of false memories in aging. They also provide an understanding of the neural mechanisms that support these reductions. 
                        more » 
                        « less   
                    
                            
                            Investigating the neural basis of schematic false memories by examining schematic and lure pattern similarity
                        
                    
    
            Schemas allow us to make assumptions about the world based upon previous experiences and aid in memory organisation and retrieval. However, a reliance on schemas may also result in increased false memories to schematically related lures. Prior neuroimaging work has linked schematic processing in memory tasks to activity in prefrontal, visual, and temporal regions. Yet, it is unclear what type of processing in these regions underlies memory errors. The current study examined where schematic lures exhibit greater neural similarity to schematic targets, leading to this memory error, as compared to neural overlap with non-schematic lures, which, like schematic lures, are novel items at retrieval. Results showed that patterns of neural activity in ventromedial prefrontal cortex, medial frontal gyrus, middle temporal gyrus, hippocampus, and occipital cortices exhibited greater neural pattern similarity for schematic targets and schematic lures than between schematic lures and non-schematic lures. As such, results suggest that schematic membership, and not object history, may be more critical to the neural processes underlying memory retrieval in the context of a strong schema. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1025709
- PAR ID:
- 10587720
- Publisher / Repository:
- Taylor & Francis Online
- Date Published:
- Journal Name:
- Memory
- ISSN:
- 0965-8211
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Statistical learning (SL) is the ability to detect and learn regularities from input and is foundational to language acquisition. Despite the dominant role of SL as a theoretical construct for language development, there is a lack of direct evidence supporting the shared neural substrates underlying language processing and SL. It is also not clear whether the similarities, if any, are related to linguistic processing, or statistical regularities in general. The current study tests whether the brain regions involved in natural language processing are similarly recruited during auditory, linguistic SL. Twenty-two adults performed an auditory linguistic SL task, an auditory nonlinguistic SL task, and a passive story listening task as their neural activation was monitored. Within the language network, the left posterior temporal gyrus showed sensitivity to embedded speech regularities during auditory, linguistic SL, but not auditory, nonlinguistic SL. Using a multivoxel pattern similarity analysis, we uncovered similarities between the neural representation of auditory, linguistic SL, and language processing within the left posterior temporal gyrus. No other brain regions showed similarities between linguistic SL and language comprehension, suggesting that a shared neurocomputational process for auditory SL and natural language processing within the left posterior temporal gyrus is specific to linguistic stimuli.more » « less
- 
            Successful memory performance depends on overlap between neural representations at encoding and retrieval. With older age, neural similarity, memory performance, and sleep quality decline. Regardless of age, racial/ethnic minorities tend to experience poor sleep, which may contribute to poor memory. Previous studies have not investigated memory performance, neural similarity, sleep quality, and age in diverse participants. Here, we recruited racially/ethnically diverse adults across the lifespan and examined night-to-night sleep quality in relation to memory performance and encoding-retrieval similarity. We employed item-specific, representational similarity analysis (not confounded by effort, word perception, or differences in electroencephalography signal amplitude) to assess neural similarity for intact and recombined paired associates. Greater sleep variance and poorer memory performance were more strongly associated with older age. Interestingly, sleep variance was positively associated with neural similarity for intact pairs. This relationship was stronger with younger age and for racial/ethnic minorities. For recombined pairs, greater sleep variance was associated with reduced neural similarity. Thus, varied sleep may induce greater reliance on familiarity, while consistent sleep may support recollection.more » « less
- 
            Abstract As science and technology rapidly progress, it becomes increasingly important to understand how individuals comprehend expository technical texts that explain these advances. This study examined differences in individual readers’ technical comprehension performance and differences among texts, using functional brain imaging to measure regional brain activity while students read passages on technical topics and then took a comprehension test. Better comprehension of the technical passages was related to higher activation in regions of the left inferior frontal gyrus, left superior parietal lobe, bilateral dorsolateral prefrontal cortex, and bilateral hippocampus. These areas are associated with the construction of a mental model of the passage and with the integration of new and prior knowledge in memory. Poorer comprehension of the passages was related to greater activation of the ventromedial prefrontal cortex and the precuneus, areas involved in autobiographical and episodic memory retrieval. More comprehensible passages elicited more brain activation associated with establishing links among different types of information in the text and activation associated with establishing conceptual coherence within the text representation. These findings converge with previous behavioral research in their implications for teaching technical learners to become better comprehenders and for improving the structure of instructional texts, to facilitate scientific and technological comprehension.more » « less
- 
            Memories of fearful events can last a lifetime. The prelimbic (PL) cortex, a subregion of prefrontal cortex, plays a critical role in fear memory retrieval over time. Most studies have focused on acquisition, consolidation, and retrieval of recent memories, but much less is known about the neural mechanisms of remote memory. Using a new knock-in mouse for activity-dependent genetic labeling (TRAP2), we demonstrate that neuronal ensembles in the PL cortex are dynamic. PL neurons TRAPed during later memory retrievals are more likely to be reactivated and make larger behavioral contributions to remote memory retrieval compared to those TRAPed during learning or early memory retrieval. PL activity during learning is required to initiate this time-dependent reorganization in PL ensembles underlying memory retrieval. Finally, while neurons TRAPed during earlier and later retrievals have similar broad projections throughout the brain, PL neurons TRAPed later have a stronger functional recruitment of cortical targets.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    