We prove a splitting formula that reconstructs the logarithmic Gromov–Witten invariants of simple normal crossing varieties from the punctured Gromov–Witten invariants of their irreducible components, under the assumption of the gluing strata being toric varieties. The formula is based on the punctured Gromov–Witten theory developed by Abramovich, Chen, Gross, and Siebert.
more »
« less
This content will become publicly available on January 1, 2026
Algebraic properties of real Gromov-Witten invariants
We describe properties of the previously constructed all-genus real Gromov-Witten theory in the style of Kontsevich-Manin’s axioms and other classical equations and reconstruction results of complex Gromov-Witten theory.
more »
« less
- Award ID(s):
- 2301493
- PAR ID:
- 10587886
- Publisher / Repository:
- AIP Publishing
- Date Published:
- Journal Name:
- Journal of Mathematical Physics
- Volume:
- 66
- Issue:
- 1
- ISSN:
- 0022-2488
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)We compute the $g=1$ , $n=1$ B-model Gromov–Witten invariant of an elliptic curve $$E$$ directly from the derived category $$\mathsf{D}_{\mathsf{coh}}^{b}(E)$$ . More precisely, we carry out the computation of the categorical Gromov–Witten invariant defined by Costello using as target a cyclic $$\mathscr{A}_{\infty }$$ model of $$\mathsf{D}_{\mathsf{coh}}^{b}(E)$$ described by Polishchuk. This is the first non-trivial computation of a positive-genus categorical Gromov–Witten invariant, and the result agrees with the prediction of mirror symmetry: it matches the classical (non-categorical) Gromov–Witten invariants of a symplectic 2-torus computed by Dijkgraaf.more » « less
-
We introduce a variant of stable logarithmic maps, which we call punctured logarith- mic maps. They allow an extension of logarithmic Gromov–Witten theory in which marked points have a negative order of tangency with boundary divisors. As a main application we develop a gluing formalism which reconstructs stable logarithmic maps and their virtual cycles without expansions of the target, with trop- ical geometry providing the underlying combinatorics. Punctured Gromov–Witten invariants also play a pivotal role in the intrinsic con- struction of mirror partners by the last two authors, conjecturally relating to symplec- tic cohomology, and in the logarithmic gauged linear sigma model in work of Qile Chen, Felix Janda and Yongbin Ruan.more » « less
-
We prove a correspondence between Donaldson–Thomas invariants of quivers with potential having trivial attractor invariants and genus zero punctured Gromov–Witten invariants of holomorphic symplectic cluster varieties. The proof relies on the comparison of the stability scattering diagram, describing the wall-crossing behavior of Donaldson–Thomas invariants, with a scattering diagram capturing punctured Gromov–Witten invariants via tropical geometry.more » « less
-
A homology class [Formula: see text] of a complex flag variety [Formula: see text] is called a line degree if the moduli space [Formula: see text] of 0-pointed stable maps to X of degree d is also a flag variety [Formula: see text]. We prove a quantum equals classical formula stating that any n-pointed (equivariant, [Formula: see text]-theoretic, genus zero) Gromov–Witten invariant of line degree on X is equal to a classical intersection number computed on the flag variety [Formula: see text]. We also prove an n-pointed analogue of the Peterson comparison formula stating that these invariants coincide with Gromov–Witten invariants of the variety of complete flags [Formula: see text]. Our formulas make it straightforward to compute the big quantum [Formula: see text]-theory ring [Formula: see text] modulo the ideal [Formula: see text] generated by degrees d larger than line degrees.more » « less
An official website of the United States government
