We prove a splitting formula that reconstructs the logarithmic Gromov–Witten invariants of simple normal crossing varieties from the punctured Gromov–Witten invariants of their irreducible components, under the assumption of the gluing strata being toric varieties. The formula is based on the punctured Gromov–Witten theory developed by Abramovich, Chen, Gross, and Siebert.
more »
« less
Quivers and curves in higher dimension
We prove a correspondence between Donaldson–Thomas invariants of quivers with potential having trivial attractor invariants and genus zero punctured Gromov–Witten invariants of holomorphic symplectic cluster varieties. The proof relies on the comparison of the stability scattering diagram, describing the wall-crossing behavior of Donaldson–Thomas invariants, with a scattering diagram capturing punctured Gromov–Witten invariants via tropical geometry.
more »
« less
- PAR ID:
- 10610636
- Publisher / Repository:
- American Mathematical Society
- Date Published:
- Journal Name:
- Transactions of the American Mathematical Society
- ISSN:
- 0002-9947
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We introduce a variant of stable logarithmic maps, which we call punctured logarith- mic maps. They allow an extension of logarithmic Gromov–Witten theory in which marked points have a negative order of tangency with boundary divisors. As a main application we develop a gluing formalism which reconstructs stable logarithmic maps and their virtual cycles without expansions of the target, with trop- ical geometry providing the underlying combinatorics. Punctured Gromov–Witten invariants also play a pivotal role in the intrinsic con- struction of mirror partners by the last two authors, conjecturally relating to symplec- tic cohomology, and in the logarithmic gauged linear sigma model in work of Qile Chen, Felix Janda and Yongbin Ruan.more » « less
-
We present several expected properties of the holomorphic Floer theory of a holomorphic symplectic manifold. In particular, we propose a conjecture relating holomorphic Floer theory of Hitchin integrable systems and Donaldson-Thomas invariants of non-compact Calabi-Yau 3-folds. More generally, we conjecture that the BPS spectrum of a 4-dimensional N = 2 quantum field theory can be recovered from the holomorphic Floer theory of the corresponding Seiberg-Witten integrable system.more » « less
-
Donag, Ron; Langer, Adrian; Sułkowski, Piotr; Wendland, Katrin (Ed.)We present several expected properties of the holomorphic Floer theory of a holomorphic symplectic manifold. In particular, we propose a conjecture relating holomorphic Floer theory of Hitchin integrable systems and Donaldson-Thomas invariants of non-compact Calabi-Yau 3-folds. More generally, we conjecture that the BPS spectrum of a 4-dimensional N = 2 quantum field theory can be recovered from the holomorphic Floer theory of the corresponding Seiberg-Witten integrable system.more » « less
-
Abstract Our previous paper describes a geometric translation of the construction of open Gromov–Witten invariants by Solomon and Tukachinsky from a perspective of $$A_{\infty }$$-algebras of differential forms. We now use this geometric perspective to show that these invariants reduce to Welschinger’s open Gromov–Witten invariants in dimension 6, inline with their and Tian’s expectations. As an immediate corollary, we obtain a translation of Solomon–Tukachinsky’s open WDVV equations into relations for Welschinger’s invariants.more » « less
An official website of the United States government

