Abstract In recent years, advances in image processing and machine learning have fueled a paradigm shift in detecting genomic regions under natural selection. Early machine learning techniques employed population-genetic summary statistics as features, which focus on specific genomic patterns expected by adaptive and neutral processes. Though such engineered features are important when training data are limited, the ease at which simulated data can now be generated has led to the recent development of approaches that take in image representations of haplotype alignments and automatically extract important features using convolutional neural networks. Digital image processing methods termed α-molecules are a class of techniques for multiscale representation of objects that can extract a diverse set of features from images. One such α-molecule method, termed wavelet decomposition, lends greater control over high-frequency components of images. Another α-molecule method, termed curvelet decomposition, is an extension of the wavelet concept that considers events occurring along curves within images. We show that application of these α-molecule techniques to extract features from image representations of haplotype alignments yield high true positive rate and accuracy to detect hard and soft selective sweep signatures from genomic data with both linear and nonlinear machine learning classifiers. Moreover, we find that such models are easy to visualize and interpret, with performance rivaling those of contemporary deep learning approaches for detecting sweeps.
more »
« less
A Vision-Based Health Inspection of Power Line Conductors for the Mobile Damping Robot
Abstract Ensuring the structural integrity of the overhead power line conductor is crucial for maintaining the safety and reliability of the electrical transmission system. Exposure to environmental hazards like moisture, dust, and Wind-Induced Vibrations (WIV) can lead to defects and corrosion in power line conductors, which are primary contributors to fatigue and shortened lifespan. Thus, this paper presents a vision-based health inspection of power line conductors for a maintenance robot. The method involves image filtering techniques such as Sobel, Scharr, and Gray-scale Variance Normalization (GVN). After filtering the image, row and column analysis is conducted to identify relevant patterns that distinguish healthy and unhealthy conductors, utilizing histograms for data representation. From the histogram data analysis, 10 features were chosen from observation. Subsequently, the collected image data is classified into either healthy or unhealthy categories through supervised machine learning models, including Random Forest (RF), Multi-Layer Perception (MLP), and Gradient Boosting (GB). The best combination of features is extracted to optimize each machine-learning models accordingly. Experimental results validated the effectiveness of our method, which has been specifically fitted for the Mobile Damping Robot (MDR), presenting its potential for enhancing power line maintenance.
more »
« less
- Award ID(s):
- 2038187
- PAR ID:
- 10587897
- Publisher / Repository:
- American Society of Mechanical Engineers
- Date Published:
- ISBN:
- 978-0-7918-8835-3
- Format(s):
- Medium: X
- Location:
- Washington, DC, USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Wire arc additive manufacturing (WAAM) has gained attention as a feasible process in large-scale metal additive manufacturing due to its high deposition rate, cost efficiency, and material diversity. However, WAAM induces a degree of uncertainty in the process stability and the part quality owing to its non-equilibrium thermal cycles and layer-by-layer stacking mechanism. Anomaly detection is therefore necessary for the quality monitoring of the parts. Most relevant studies have applied machine learning to derive data-driven models that detect defects through feature and pattern learning. However, acquiring sufficient data is time- and/or resource-intensive, which introduces a challenge to applying machine learning-based anomaly detection. This study proposes a multisource transfer learning method that generates anomaly detection models for balling defect detection, thus ensuring quality monitoring in WAAM. The proposed method uses convolutional neural network models to extract sufficient image features from multisource materials, then transfers and fine-tunes the models for anomaly detection in the target material. Stepwise learning is applied to extract image features sequentially from individual source materials, and composite learning is employed to assign the optimal frozen ratio for converging transferred and present features. Experiments were performed using a gas tungsten arc welding-based WAAM process to validate the classification accuracy of the models using low-carbon steel, stainless steel, and Inconel.more » « less
-
Over the past decades, there has been an increase of attention to adapting machine learning methods to fully exploit the higher order structure of tensorial data. One problem of great interest is tensor classification, and in particular the extension of linear discriminant analysis to the multilinear setting. We propose a novel method for multilinear discriminant analysis that is radically different from the ones considered so far, and it is the first extension to tensors of quadratic discriminant analysis. Our proposed approach uses invariant theory to extend the nearest Mahalanobis distance classifier to the higher-order setting, and to formulate a well-behaved optimization problem. We extensively test our method on a variety of synthetic data, outperforming previously proposed MDA techniques. We also show how to leverage multi-lead ECG data by constructing tensors via taut string, and use our method to classify healthy signals versus unhealthy ones; our method outperforms state-of-the-art MDA methods, especially after adding significant levels of noise to the signals. Our approach reached an AUC of 0.95(0.03) on clean signals—where the second best method reached 0.91(0.03)—and an AUC of 0.89(0.03) after adding noise to the signals (with a signal-to-noise-ratio of −30)—where the second best method reached 0.85(0.05). Our approach is fundamentally different than previous work in this direction, and proves to be faster, more stable, and more accurate on the tests we performed.more » « less
-
Abstract From 2013 to 2022, 1671 derailments have been reported by the Federal Railroad Administration (FRA), 8.2% of which were due to journal bearing defects. The University Transportation Center for Railway Safety (UTCRS) designed an onboard monitoring system that tracks vibration waveforms over time to assess bearing health through three analysis levels. However, the speed of the bearing, a fundamental parameter for these analyses, is often acquired from Global Positioning System (GPS) data, which is typically not available at the sensor location. To solve this issue, this paper proposes to employ Machine Learning (ML) algorithms to extract the speed and other essential features from existing vibration data, eliminating the need for additional speed sensors. Specifically, the proposed method tries to extract the speed information from the signatures that are embedded in the Power Spectral Density (PSD) plot, which enables rapid real-time analysis of bearings while the train is in motion. The rapid extraction of data could be sent to a cloud accessible by train dispatchers and railcar owners for assessment of bearings and scheduling of replacements before defects reach a dangerous size. Eventually, the developed algorithm will reduce derailments and unplanned field replacements and afford rail stakeholders more cost-effective preventive maintenance.more » « less
-
Abstract BackgroundThe expanding usage of complex machine learning methods such as deep learning has led to an explosion in human activity recognition, particularly applied to health. However, complex models which handle private and sometimes protected data, raise concerns about the potential leak of identifiable data. In this work, we focus on the case of a deep network model trained on images of individual faces. Materials and methodsA previously published deep learning model, trained to estimate the gaze from full-face image sequences was stress tested for personal information leakage by a white box inference attack. Full-face video recordings taken from 493 individuals undergoing an eye-tracking- based evaluation of neurological function were used. Outputs, gradients, intermediate layer outputs, loss, and labels were used as inputs for a deep network with an added support vector machine emission layer to recognize membership in the training data. ResultsThe inference attack method and associated mathematical analysis indicate that there is a low likelihood of unintended memorization of facial features in the deep learning model. ConclusionsIn this study, it is showed that the named model preserves the integrity of training data with reasonable confidence. The same process can be implemented in similar conditions for different models.more » « less
An official website of the United States government

