Large-eddy simulation was used to model turbulent atmospheric surface layer (ASL) flow over canopies composed of streamwise-aligned rows of synthetic trees of height,$$h$$, and systematically arranged to quantify the response to variable streamwise spacing,$$\delta _1$$, and spanwise spacing,$$\delta _2$$, between adjacent trees. The response to spanwise and streamwise heterogeneity has, indeed, been the topic of a sustained research effort: the former resulting in formation of Reynolds-averaged counter-rotating secondary cells, the latter associated with the$$k$$- and$$d$$-type response. No study has addressed the confluence of both, and results herein show secondary flow polarity reversal across ‘critical’ values of$$\delta _1$$and$$\delta _2$$. For$$\delta _2/\delta \lesssim 1$$and$$\gtrsim 2$$, where$$\delta$$is the flow depth, the counter-rotating secondary cells are aligned such that upwelling and downwelling, respectively, occurs above the elements. The streamwise spacing$$\delta _1$$regulates this transition, with secondary cell reversal occurring first for the largest$$k$$-type cases, as elevated turbulence production within the canopy necessitates entrainment of fluid from aloft. The results are interpreted through the lens of a benchmark prognostic closure for effective aerodynamic roughness,$$z_{0,{Eff.}} = \alpha \sigma _h$$, where$$\alpha$$is a proportionality constant and$$\sigma _h$$is height root mean square. We report$$\alpha \approx 10^{-1}$$, the value reported over many decades for a broad range of rough surfaces, for$$k$$-type cases at small$$\delta _2$$, whereas the transition to$$d$$-type arrangements necessitates larger$$\delta _2$$. Though preliminary, results highlight the non-trivial response to variation of streamwise and spanwise spacing.
more »
« less
This content will become publicly available on April 10, 2026
Lift and drag forces on a moving intruder in granular shear flow
Lift and drag forces on moving intruders in flowing granular materials are of fundamental interest but have not yet been fully characterized. Drag on an intruder in granular shear flow has been studied almost exclusively for the intruder moving across flow streamlines, and the few studies of the lift explore a relatively limited range of parameters. Here, we use discrete element method simulations to measure the lift force,$$F_{{L}}$$, and the drag force on a spherical intruder in a uniformly sheared bed of smaller spheres for a range of streamwise intruder slip velocities,$$u_{{s}}$$. The streamwise drag matches the previously characterized Stokes-like cross-flow drag. However,$$F_{{L}}$$in granular shear flow acts in the opposite direction to the Saffman lift in a sheared fluid at low$$u_{{s}}$$, reaches a maximum value and then decreases with increasing$$u_{{s}}$$, eventually reversing direction. This non-monotonic response holds over a range of flow conditions, and the$$F_{{L}}$$versus$$u_{{s}}$$data collapse when both quantities are scaled using the particle size, shear rate and overburden pressure. Analogous fluid simulations demonstrate that the flow around the intruder particle is similar in the granular and fluid cases. However, the shear stress on the granular intruder is notably less than that in a fluid shear flow. This difference, combined with a void behind the intruder in granular flow in which the stresses are zero, significantly changes the lift-force-inducing stresses acting on the intruder between the granular and fluid cases.
more »
« less
- Award ID(s):
- 1929265
- PAR ID:
- 10588087
- Publisher / Repository:
- Cambridge University Press
- Date Published:
- Journal Name:
- Journal of Fluid Mechanics
- Volume:
- 1008
- ISSN:
- 0022-1120
- Page Range / eLocation ID:
- A5
- Subject(s) / Keyword(s):
- dry granular material granular materials
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We investigate the effects of fluid elasticity on the flow forces and the wake structure when a rigid cylinder is placed in a viscoelastic flow and is forced to oscillate sinusoidally in the transverse direction. We consider a two-dimensional, uniform, incompressible flow of viscoelastic fluid at$$Re=100$$, and use the FENE-P model to represent the viscoelastic fluid. We study how the flow forces and the wake patterns change as the amplitude of oscillations,$$A^*$$, the frequency of oscillations (inversely proportional to a reduced velocity,$$U^*$$), the Weissenberg number,$$Wi$$, the square of maximum polymer extensibility,$$L^2$$, and the viscosity ratio,$$\beta$$, change individually. We calculate the lift coefficient in phase with cylinder velocity to determine the range of different system parameters where self-excited oscillations might occur if the cylinder is allowed to oscillate freely. We also study the effect of fluid elasticity on the added mass coefficient as these parameters change. The maximum elastic stress of the fluid occurs in between the vortices that are observed in the wake. We observe a new mode of shedding in the wake of the cylinder: in addition to the primary vortices that are also observed in the Newtonian flows, secondary vortices that are caused entirely by the viscoelasticity of the fluid are observed in between the primary vortices. We also show that, for a constant$$Wi$$, the strength of the polymeric stresses increases with increasing reduced velocity or with decreasing amplitude of oscillations.more » « less
-
The motion of a disk in a Langmuir film bounding a liquid substrate is a classical hydrodynamic problem, dating back to Saffman (J. Fluid Mech., vol. 73, 1976, p. 593) who focused upon the singular problem of translation at large Boussinesq number,$${\textit {Bq}}\gg 1$$. A semianalytic solution of the dual integral equations governing the flow at arbitrary$${\textit {Bq}}$$was devised by Hugheset al.(J. Fluid Mech., vol. 110, 1981, p. 349). When degenerated to the inviscid-film limit$${\textit {Bq}}\to 0$$, it produces the value$$8$$for the dimensionless translational drag, which is$$50\,\%$$larger than the classical$$16/3$$-value corresponding to a free surface. While that enhancement has been attributed to surface incompressibility, the mathematical reasoning underlying the anomaly has never been fully elucidated. Here we address the inviscid limit$${\textit {Bq}}\to 0$$from the outset, revealing a singular mechanism where half of the drag is contributed by the surface pressure. We proceed beyond that limit, considering a nearly inviscid film. A naïve attempt to calculate the drag correction using the reciprocal theorem fails due to an edge singularity of the leading-order flow. We identify the formation of a boundary layer about the edge of the disk, where the flow is primarily in the azimuthal direction with surface and substrate stresses being asymptotically comparable. Utilising the reciprocal theorem in a fluid domain tailored to the asymptotic topology of the problem produces the drag correction$$(8\,{\textit {Bq}}/{\rm \pi} ) [ \ln (2/{\textit {Bq}}) + \gamma _E+1]$$,$$\gamma _E$$being the Euler–Mascheroni constant.more » « less
-
Flow dynamics around a stationary flat plate near a free surface is investigated using time-resolved two-dimensional particle image velocimetry. The study examines variations in angle of attack ($$\theta =0^\circ {-}35^\circ {}$$), Reynolds number ($$Re$$$$\approx$$$$10^3$$$$-$$3$$\times$$$$10^4$$) and plate proximity to the free surface ($$H^*$$). Under symmetric boundary conditions ($$H^*\geqslant {15}$$), increasing$$\theta$$intensifies fluid–plate interaction, resulting in the shedding of leading-edge and trailing-edge vortices (LEV and TEV), each characterised by distinct strengths and sizes. In both symmetric ($$H^*\geqslant {15}$$) and asymmetric ($$H^*=5$$) boundary conditions at$$\theta \lt 5^\circ {}$$, fluid flow follows the contour of the plate, unaffected by Reynolds number. However, at$$H^*=5$$, three flow regimes emerge: the first Coanda effect (CI), regular shedding (RS) and the second Coanda effect (CII), each influenced by$$\theta$$and$$Re$$. The CI regime dominates at lower angles ($$5^\circ {}\leqslant \theta \leqslant 25^\circ {}$$) and$$Re \leqslant 12\,500$$, featuring a Coanda-induced jet-like flow pattern. As the Reynolds number increases, the flow transitions into the RS regime, leading to detachment from the upper surface of the plate. This detachment results in the formation of LEV and TEV in the wake, along with surface deformation, secondary vortices and wavy shear layers beneath the free surface. At$$22\,360\lt Re \leqslant 32\,200$$and$$5^\circ {} \leqslant \theta \leqslant 25^\circ {}$$, in the CII regime, significant surface deformation causes the Coanda effect to reattach the flow to the plate, forming a unique jet-like flow.more » « less
-
We explored the settling dynamics of vertically aligned particles in a quiescent, stratified two-layer fluid using particle tracking velocimetry. Glass spheres of$$d=4\,{\rm mm}$$diameter were released at frequencies of 4, 6 and 8 Hz near the free surface, traversing through an upper ethanol layer ($$H_1$$), whereHis height or layer thickess, varying from$$10d$$to$$40d$$and a lower oil layer. Results reveal pronounced lateral particle motion in the ethanol layer, attributed to a higher Galileo number ($$Ga = 976$$, ratio of buoyancy–gravity to viscous effects), compared with the less active behaviour in the oil layer ($$Ga = 16$$). The ensemble vertical velocity of particles exhibited a minimum just past the density interface, becoming more pronounced with increasing$$H_1$$, and suggesting that enhanced entrainment from ethanol to oil resulted in an additional buoyancy force. This produced distinct patterns of particle acceleration near the density interface, which were marked by significant deceleration, indicating substantial resistance to particle motion. An increased drag coefficient occurred for$$H_1/d = 40$$compared with a single particle settling in oil; drag reduced as the particle-release frequency ($$\,f_p$$) increased, likely due to enhanced particle interactions at closer proximity. Particle pair dispersions, lateral ($$R^2_L$$) and vertical ($$R^2_z$$), were modulated by$$H_1$$, initial separation$$r_0$$and$$f_p$$. The$$R^2_L$$dispersion displayed ballistic scaling initially, Taylor scaling for$$r_0 < H_1$$and Richardson scaling for$$r_0 > H_1$$. In contrast,$$R^2_z$$followed a$$R^2_z \sim t^{5.5}$$scaling under$$r_0 < H_1$$. Both$$R^2_L$$and$$R^2_z$$plateaued at a distance from the interface, depending on$$H_1$$and$$f_p$$.more » « less
An official website of the United States government
