skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: High-Performance Lithium–Sulfur Batteries via Molecular Complexation
Beyond lithium-ion technologies, lithium−sulfur batteries stand out because of their multielectron redox reactions and high theoretical specific energy (2500 Wh kg−1). However, the intrinsic irreversible transformation of soluble lithium polysulfides to solid short-chain sulfur species (Li2S2 and Li2S) and the associated large volume change of electrode materials significantly impair the long-term stability of the battery. Here we present a liquid sulfur electrode consisting of lithium thiophosphate complexes dissolved in organic solvents that enable the bonding and storage of discharge reaction products without precipitation. Insights garnered from coupled spectroscopic and density functional theory studies guide the complex molecular design, complexation mechanism, and associated electrochemical reaction mechanism. With the novel complexes as cathode materials, high specific capacity (1425 mAh g−1 at 0.2 C) and excellent cycling stability (80% retention after 400 cycles at 0.5 C) are achieved at room temperature. Moreover, the highly reversible all-liquid electrochemical conversion enables excellent low temperature battery operability (>400 mAh g−1 at −40 °C and >200 mAh g−1 at −60 °C). This work opens new avenues to design and tailor the sulfur electrode for enhanced electrochemical performance across a wide operating temperature range.  more » « less
Award ID(s):
1927845
PAR ID:
10588183
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Journal of the American Chemical Society
Date Published:
Journal Name:
Journal of the American Chemical Society
Volume:
145
Issue:
34
ISSN:
0002-7863
Page Range / eLocation ID:
18865 to 18876
Subject(s) / Keyword(s):
low-temperature battery
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Porous carbon plays a significant role in all‐solid‐state lithium‐sulfur batteries (ASSLSBs) to enhance the electronic conductivity of sulfur. However, the conventional porous carbon used in cell with liquid electrolyte exhibits low efficiency in ASSLSBs because the immobile solid electrolyte (SE) cannot reach sulfur confined in the deep pores. The structure and distribution of pores in carbon highly impact the electrochemical performance of ASSLSBs. Herein, a N‐doped carbon fiber with micropores located only at the surface with an ultrahigh surface area of 1519 mg–1is designed. As the porous layer is only on the surface, the sulfur hosted in the pores can effectively contact SE; meanwhile the dense core provides excellent electrical conductivity. Therefore, this structurally designed carbon fiber enhances both electron and ion accessibilities, promotes charge transfer, and thus dramatically improves the reaction kinetic in the ASSLSBs and boosts sulfur utilization. Compared to the vapor grown carbon fibers, the ASSLSBs using PAN‐derived porous carbon fibers exhibit three times enhancement in the initial capacity of 1166 mAh g–1at C/20. An exceedingly cycling stability of 710 mAh g–1is maintained after 220 cycles at C/10, and satisfactory rate capability of 889 mAh g–1at C/2 is achieved. 
    more » « less
  2. Sodium metal batteries are an emerging technology that shows promise in terms of materials availability with respect to lithium batteries. Solid electrolytes are needed to tackle the safety issues related to sodium metal. In this work, a simple method to prepare a mechanically robust and efficient soft solid electrolyte for sodium batteries is demonstrated. A task-specific iongel electrolyte was prepared by combining in a simple process the excellent performance of sodium metal electrodes of an ionic liquid electrolyte and the mechanical properties of polymers. The iongel was synthesized by fast (<1 min) UV photopolymerization of poly(ethylene glycol) diacrylate (PEGDA) in the presence of a saturated 42%mol solution of sodium bis(fluorosulfonyl)imide (NaFSI) in trimethyl iso-butyl phosphonium bis(fluorosulfonyl)imide (P111i4FSI). The resulting soft solid electrolytes showed high ionic conductivity at room temperature (≥10−3 S cm−1) and tunable storage modulus (104–107 Pa). Iongel with the best ionic conductivity and good mechanical properties (Iongel10) showed excellent battery performance: Na/iongel/NaFePO4 full cells delivered a high specific capacity of 140 mAh g−1 at 0.1 C and 120 mAh g−1 at 1 C with good capacity retention after 30 cycles. 
    more » « less
  3. Sulfur-polyacrylonitrile (S-PAN) composite has been developed as a novel composite cathode material to address many issues with conventional Li-S batteries (LSBs). In this study, a freestanding S-PAN-CNT composite is first developed as the cathode material for LSBs, which is capable to deliver a high specific capacity of 1458 mAh g-1 at 0.2C and a desirable high-rate performance of 1097 mAh g-1 at 2.0 C. Furthermore, a Li2S-PAN-CNT cathode is obtained via in-situ direct pre-lithiation of S-PAN-CNT composite, which exhibits an even improved discharge capacity, cycling performance, and rate capability. Lastly, we develop Li-ion sulfur full batteries based on both S-PAN-CNT and Li2S-PAN-CNT cathode. The excellent electrochemical performance and corresponding theoretical estimation both demonstrate that the proposed system as a promising metal-free Li-ion battery with a high specific capacity, good cycle life, and low cost. 
    more » « less
  4. Abstract The lithium–sulfur (Li–S) battery is a promising candidate for next‐generation high‐density energy storage devices because of its ultrahigh theoretical energy density and the natural abundance of sulfur. However, the practical performance of the sulfur cathode is plagued by fast capacity decay and poor cycle life, both of which can be attributed to the intrinsic dissolution/shuttling of lithium polysulfides. Here, a new built‐in magnetic field–enhanced polysulfide trapping mechanism is discovered by introducing ferromagnetic iron/iron carbide (Fe/Fe3C) nanoparticles with a graphene shell (Fe/Fe3C/graphene) onto a flexible activated cotton textile (ACT) fiber to prepare the ACT@Fe/Fe3C/graphene sulfur host. The novel trapping mechanism is demonstrated by significant differences in the diffusion behavior of polysulfides in a custom‐designed liquid cell compared to a pure ACT/S cathode. Furthermore, a cell assembled using the ACT@Fe/Fe3C/S cathode exhibits a high initial discharge capacity of ≈764 mAh g−1, excellent rate performance, and a remarkably long lifespan of 600 cycles using ACT@Fe/Fe3C/S (whereas only 100 cycles can be achieved using pure ACT/S). The new magnetic field–enhanced trapping mechanism provides not only novel insight but unveils new possibilities for mitigating the “shuttle effect” of polysulfides thereby promoting the practical applications of Li–S batteries. 
    more » « less
  5. It is urgent to enhance battery energy storage capability to satisfy the increasing energy demand in modern society and reduce the average energy capacity cost. Among the candidates for next-generation high energy storage systems, the lithium-sulfur battery is especially attractive because of its high theoretical specific energy (around 2600 W h kg-1) and cost savings potential.1 In addition to the high theoretical capacity of sulfur cathode as high as 1,673 mA h g-1, sulfur is further appealing due to its abundance in nature, low cost, and low toxicity. Despite these advantages, the application of sulfur cathodes to date has been hindered by a number of obstacles, including low active material loading, low electronic conductivity, shuttle effects, and sluggish sulfur conversion kinetics.2 The traditional 2D planer thick electrode is considered as a general approach to enhance the mass loading of the lithium-sulfur (Li-S) battery.3 However, the longer diffusion length of lithium ions required in the thick electrode decrease the wettability of the electrolyte (into the entire cathode) and utilization ratio of active materials.4 Encapsulating active sulfur in carbon hosts is another common method to improve the performance of sulfur cathodes by enhancing the electronic conductivity and restricting shuttle effects. Nevertheless, it is also reported that the encapsulation approach causes unfavorable carbon agglomeration with low dimensional carbons and a low energy density of the battery with high dimensional carbons. Although an effort to induce defects in the cathode was made to promote sulfur conversion kinetic conditions, only one type of defect has demonstrated limited performance due to the strong adsorption of the uncatalyzed clusters to the defects (i.e.: catalyst poisoning). 5 To mitigate the issues listed above, herein we propose a novel sulfur electrode design strategy enabled by additive manufacturing and oxidative chemical vapor deposition (oCVD).6,7 Specifically, the electrode is designed to have a hierarchal hollow structure via a stereolithography technique to increase sulfur usage. Microchannels are constructed on the tailored sulfur cathode to further fortify the wettability of the electrolyte. The as-printed cathode is then sintered at 700 °C in a reducing atmosphere (e.g.: H2) in order to generate a carbon skeleton (i.e.: carbonization of resin) with intrinsic carbon defects. A cathode treatment with benzene sulfonic acid further induces additional defects (non-intrinsic) to enhance the sulfur conversion kinetic. Furthermore, intrinsic defects engineering is expected to synergistically create favorable sulfur conversion conditions and mitigate the catalyst poisoning issue. In this study, the oCVD technique is leveraged to produce a conformal coating layer to eliminate shuttle effects, unfavored in the Li-S battery performance. Identified by SEM and TEM characterizations, the oCVD PEDOT is not only covered on the surface of the cathode but also the inner surface of the microchannels. High resolution x-ray photoelectron spectroscopy analyses (C 1s and S 2p orbitals) between pristine and modified sample demonstrate that the high concentration of the defects have been produced on the sulfur matrix after sintering and posttreatment. In-operando XRD diffractograms show that the Li2S is generated in the oCVD PEDOT-coated sample during the charge and discharge process even with a high current density, confirming an eminent sulfur conversion kinetic condition. In addition, ICP-OES results of lithium metal anode at different states of charge (SoC) verify that the shuttle effects are excellently restricted by oCVD PEDOT. Overall, the high mass loading (> 5 mg cm-2) with elevated sulfur utilization ratio, accelerated reaction kinetics, and stabilized electrochemical process have been achieved on the sulfur cathode by implementing this innovative cathode design strategy. The results of this study demonstrate significant promises of employing pure sulfur powder with high electrochemical performance and suggest a pathway to the higher energy and power density battery. 
    more » « less