skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 1, 2025

Title: Search for CP -Violating Neutrino Nonstandard Interactions with the NOvA Experiment
This Letter reports a search for charge-parity ( C P ) symmetry violating nonstandard interactions (NSI) of neutrinos with matter using the NOvA Experiment, and examines their effects on the determination of the standard oscillation parameters. Data from ν μ ( ν ¯ μ ) ν μ ( ν ¯ μ ) and ν μ ( ν ¯ μ ) ν e ( ν ¯ e ) oscillation channels are used to measure the effect of the NSI parameters ϵ e μ and ϵ e τ . With 90% CL the magnitudes of the NSI couplings are constrained to be | ϵ e μ | 0.3 and | ϵ e τ | 0.4 . A degeneracy at | ϵ e τ | 1.8 is reported, and we observe that the presence of NSI limits sensitivity to the standard C P phase δ C P . Published by the American Physical Society2024  more » « less
Award ID(s):
2310154 2411700
PAR ID:
10588185
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Corporate Creator(s):
Publisher / Repository:
American Physical Society
Date Published:
Journal Name:
Physical Review Letters
Volume:
133
Issue:
20
ISSN:
0031-9007
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The ratio of branching fractions R ( D * ) = B ( B ¯ D * τ ν ¯ τ ) / B ( B ¯ D * ν ¯ ) , where is an electron or muon, is measured using a Belle II data sample with an integrated luminosity of 189 fb 1 at the SuperKEKB asymmetric-energy e + e collider. Data is collected at the ϒ ( 4 S ) resonance, and one B meson in the ϒ ( 4 S ) B B ¯ decay is fully reconstructed in hadronic decay modes. The accompanying signal B meson is reconstructed as B ¯ D * τ ν ¯ τ using leptonic τ decays. The normalization decay, B ¯ D * ν ¯ , produces the same observable final-state particles. The ratio of branching fractions is extracted in a simultaneous fit to two signal-discriminating variables in both channels and yields R ( D * ) = 0.262 0.039 + 0.041 ( stat ) 0.032 + 0.035 ( syst ) . This result is consistent with the current world average and with Standard Model predictions. Published by the American Physical Society2024 
    more » « less
  2. We study ν μ ν s and ν ¯ μ ν ¯ s mixing in the protoneutron star (PNS) created in a core-collapse supernova (CCSN). We point out the importance of the feedback on the general composition of the PNS in addition to the obvious feedback on the ν μ lepton number. We show that for our adopted mixing parameters δ m 2 10 2 keV 2 and sin 2 2 θ consistent with the current constraints, sterile neutrino production is dominated by the Mikheyev–Smirnov–Wolfenstein conversion of ν ¯ μ into ν ¯ s and that the subsequent escape of ν ¯ s increases the ν μ lepton number, which in turn enhances muonization of the PNS primarily through ν μ + n p + μ . While these results are qualitatively robust, their quantitative effects on the dynamics and active neutrino emission of core-collapse supernovae should be evaluated by including ν μ ν s and ν ¯ μ ν ¯ s mixing in the simulations. Published by the American Physical Society2024 
    more » « less
  3. We measure the complete set of angular coefficients J i for exclusive B ¯ D * ν ¯ decays ( = e , μ ). Our analysis uses the full 711 fb 1 Belle dataset with hadronic tag-side reconstruction. The results allow us to extract the form factors describing the B ¯ D * transition and the Cabibbo-Kobayashi-Maskawa matrix element | V cb | . Using recent lattice QCD calculations for the hadronic form factors, we find | V cb | = ( 40.7 ± 0.7 ) × 10 3 using the Boyd-Grinstein-Lebed parametrization, compatible with determinations from inclusive semileptonic decays. We search for lepton flavor universality violation as a function of the hadronic recoil parameter w and investigate the differences of the electron and muon angular distributions. We find no deviation from standard model expectations. Published by the American Physical Society2024 
    more » « less
  4. We present a search for the baryon number B and lepton number L violating decays τ Λ π and τ Λ ¯ π produced from the e + e τ + τ process, using a 364 fb 1 data sample collected by the Belle II experiment at the SuperKEKB collider. No evidence of signal is found in either decay mode, which have | Δ ( B L ) | equal to 2 and 0, respectively. Upper limits at 90% credibility level on the branching fractions of τ Λ π and τ Λ ¯ π are determined to be 4.7 × 10 8 and 4.3 × 10 8 , respectively. Published by the American Physical Society2024 
    more » « less
  5. A combination of searches for a new resonance decaying into a Higgs boson pair is presented, using up to 139 fb 1 of p p collision data at s = 13 TeV recorded with the ATLAS detector at the LHC. The combination includes searches performed in three decay channels: b b ¯ b b ¯ , b b ¯ τ + τ , and b b ¯ γ γ . No excess above the expected Standard Model background is observed and upper limits are set at the 95% confidence level on the production cross section of Higgs boson pairs originating from the decay of a narrow scalar resonance with mass in the range 251 GeV–5 TeV. The observed (expected) limits are in the range 0.96–600 fb (1.2–390 fb). The limits are interpreted in the type-I two-Higgs-doublet model and the minimal supersymmetric standard model, and constrain parameter space not previously excluded by other searches. © 2024 CERN, for the ATLAS Collaboration2024CERN 
    more » « less