skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 1, 2025

Title: Search for CP -Violating Neutrino Nonstandard Interactions with the NOvA Experiment
This Letter reports a search for charge-parity ( C P ) symmetry violating nonstandard interactions (NSI) of neutrinos with matter using the NOvA Experiment, and examines their effects on the determination of the standard oscillation parameters. Data from ν μ ( ν ¯ μ ) ν μ ( ν ¯ μ ) and ν μ ( ν ¯ μ ) ν e ( ν ¯ e ) oscillation channels are used to measure the effect of the NSI parameters ϵ e μ and ϵ e τ . With 90% CL the magnitudes of the NSI couplings are constrained to be | ϵ e μ | 0.3 and | ϵ e τ | 0.4 . A degeneracy at | ϵ e τ | 1.8 is reported, and we observe that the presence of NSI limits sensitivity to the standard C P phase δ C P . Published by the American Physical Society2024  more » « less
Award ID(s):
2310154 2411700
PAR ID:
10588185
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Corporate Creator(s):
Publisher / Repository:
American Physical Society
Date Published:
Journal Name:
Physical Review Letters
Volume:
133
Issue:
20
ISSN:
0031-9007
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We study ν μ ν s and ν ¯ μ ν ¯ s mixing in the protoneutron star (PNS) created in a core-collapse supernova (CCSN). We point out the importance of the feedback on the general composition of the PNS in addition to the obvious feedback on the ν μ lepton number. We show that for our adopted mixing parameters δ m 2 10 2 keV 2 and sin 2 2 θ consistent with the current constraints, sterile neutrino production is dominated by the Mikheyev–Smirnov–Wolfenstein conversion of ν ¯ μ into ν ¯ s and that the subsequent escape of ν ¯ s increases the ν μ lepton number, which in turn enhances muonization of the PNS primarily through ν μ + n p + μ . While these results are qualitatively robust, their quantitative effects on the dynamics and active neutrino emission of core-collapse supernovae should be evaluated by including ν μ ν s and ν ¯ μ ν ¯ s mixing in the simulations. Published by the American Physical Society2024 
    more » « less
  2. We search for the rare decay B + K + ν ν ¯ in a 362 fb 1 sample of electron-positron collisions at the ϒ ( 4 S ) resonance collected with the Belle II detector at the SuperKEKB collider. We use the inclusive properties of the accompanying B meson in ϒ ( 4 S ) B B ¯ events to suppress background from other decays of the signal B candidate and light-quark pair production. We validate the measurement with an auxiliary analysis based on a conventional hadronic reconstruction of the accompanying B meson. For background suppression, we exploit distinct signal features using machine learning methods tuned with simulated data. The signal-reconstruction efficiency and background suppression are validated through various control channels. The branching fraction is extracted in a maximum likelihood fit. Our inclusive and hadronic analyses yield consistent results for the B + K + ν ν ¯ branching fraction of [ 2.7 ± 0.5 ( stat ) ± 0.5 ( syst ) ] × 10 5 and [ 1.1 0.8 + 0.9 ( stat ) 0.5 + 0.8 ( syst ) ] × 10 5 , respectively. Combining the results, we determine the branching fraction of the decay B + K + ν ν ¯ to be [ 2.3 ± 0.5 ( stat ) 0.4 + 0.5 ( syst ) ] × 10 5 , providing the first evidence for this decay at 3.5 standard deviations. The combined result is 2.7 standard deviations above the standard model expectation. Published by the American Physical Society2024 
    more » « less
  3. The first results of the study of high-energy electron neutrino ( ν e ) and muon neutrino ( ν μ ) charged-current interactions in the FASER ν emulsion-tungsten detector of the FASER experiment at the LHC are presented. A 128.8 kg subset of the FASER ν volume was analyzed after exposure to 9.5 fb 1 of s = 13.6 TeV p p data. Four (eight) ν e ( ν μ ) interaction candidate events are observed with a statistical significance of 5.2 σ ( 5.7 σ ). This is the first direct observation of ν e interactions at a particle collider and includes the highest-energy ν e and ν μ ever detected from an artificial source. The interaction cross section per nucleon σ / E ν is measured over an energy range of 560–1740 GeV (520–1760 GeV) for ν e ( ν μ ) to be ( 1.2 0.7 + 0.8 ) × 10 38 cm 2 GeV 1 [ ( 0.5 ± 0.2 ) × 10 38 cm 2 GeV 1 ], consistent with standard model predictions. These are the first measurements of neutrino interaction cross sections in those energy ranges. Published by the American Physical Society2024 
    more » « less
  4. We employ first-principles quantum field theoretical methods to investigate the longitudinal and transverse electrical conductivities of a strongly magnetized hot quantum electrodynamics (QED) plasma at the leading order in coupling. The analysis employs the fermion damping rate in the Landau-level representation, calculated with full kinematics and exact amplitudes of one-to-two and two-to-one QED processes. In the relativistic regime, both conductivities exhibit an approximate scaling behavior described by σ , = T σ ˜ , , where σ ˜ , are functions of the dimensionless ratio | e B | / T 2 (with T denoting temperature and B magnetic field strength). We argue that the mechanisms for the transverse and longitudinal conductivities differ significantly, leading to a strong suppression of the former in comparison to the latter. Published by the American Physical Society2024 
    more » « less
  5. A search for the nonresonant production of Higgs boson pairs in the H H b b ¯ τ + τ channel is performed using 140 fb 1 of proton-proton collisions at a center-of-mass energy of 13 TeV recorded by the ATLAS detector at the CERN Large Hadron Collider. The analysis strategy is optimized to probe anomalous values of the Higgs boson self-coupling modifier κ λ and of the quartic H H V V ( V = W , Z ) coupling modifier κ 2 V . No significant excess above the expected background from Standard Model processes is observed. An observed (expected) upper limit μ H H < 5.9 ( 3.3 ) is set at 95% confidence-level on the Higgs boson pair production cross section normalized to its Standard Model prediction. The coupling modifiers are constrained to an observed (expected) 95% confidence interval of 3.1 < κ λ < 9.0 ( 2.5 < κ λ < 9.3 ) and 0.5 < κ 2 V < 2.7 ( 0.2 < κ 2 V < 2.4 ), assuming all other Higgs boson couplings are fixed to the Standard Model prediction. The results are also interpreted in the context of effective field theories via constraints on anomalous Higgs boson couplings and Higgs boson pair production cross sections assuming different kinematic benchmark scenarios. © 2024 CERN, for the ATLAS Collaboration2024CERN 
    more » « less