We explore a novel, exotic physics, modality in multi-messenger astronomy. We are interested in exotic fields emitted by the mergers and theirdirectdetection with a network of atomic clocks. We specifically focus on the rubidium clocks onboard satellites of the Global Positioning System. Bursts of exotic fields may be produced during the coalescence of black hole singularities, releasing quantum gravity messengers. To be detectable such fields must be ultralight and ultra-relativistic and we refer to them as exotic low-mass fields (ELFs). Since such fields possess non-zero mass, the ELF bursts lag behind the gravitational waves emitted by the very same merger. Then the gravitational wave observatories provide a detection trigger for the atomic clock networks searching for the feeble ELF signals. ELFs would imprint an anti-chirp transient across the sensor network. ELFs can be detectable by atomic clocks if they cause variations in fundamental constants. We report our progress in the development of techniques to search for ELF bursts with clocks onboard GPS satellites. We focus on the binary neutron star merger GW170817 of August 17, 2017. We find an intriguing excess in the clock noise post LIGO gravitational wave trigger. Potentially the excess noise could be explained away by the increased solar electron flux post LIGO trigger.
more »
« less
This content will become publicly available on January 17, 2026
Multimessenger observations and the science enabled: continuous waves and their progenitors, equation of state of dense matter
Abstract Rotating and oscillating neutron stars can give rise to long-livedContinuous Gravitational Waves(CGWs). Despite many years of searching, the detection of such a CGW signal remains elusive. In this article we describe the main astrophysical uncertainties regarding such emission, and their relation to the behaviour of matter at extremely high density. We describe the main challenges in searching for CGWs, and the prospects of detecting them using third-generation gravitational wave detectors. We end by describing some pressing issues in the field, whose resolution would help turn the detection and exploitation of CGWs into reality.
more »
« less
- Award ID(s):
- 2408883
- PAR ID:
- 10588195
- Publisher / Repository:
- Classical and Quantum Gravity
- Date Published:
- Journal Name:
- Classical and Quantum Gravity
- Volume:
- 42
- Issue:
- 3
- ISSN:
- 0264-9381
- Page Range / eLocation ID:
- 033001
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The main science aim of the BlackGEM array is to detect optical counterparts to gravitational wave mergers. Additionally, the array will perform a set of synoptic surveys to detect Local Universe transients and short timescale variability in stars and binaries, as well as a six-filter all-sky survey down to ∼22nd mag. The BlackGEM Phase-I array consists of three optical wide-field unit telescopes. Each unit uses anf/5.5 modified Dall-Kirkham (Harmer-Wynne) design with a triplet corrector lens, and a 65 cm primary mirror, coupled with a 110Mpix CCD detector, that provides an instantaneous field-of-view of 2.7 square degrees, sampled at 0.″564 pixel−1. The total field-of-view for the array is 8.2 square degrees. Each telescope is equipped with a six-slot filter wheel containing an optimised Sloan set (BG-u, BG-g, BG-r, BG-i, BG-z) and a wider-band 440–720 nm (BG-q) filter. Each unit telescope is independent from the others. Cloud-based data processing is done in real time, and includes a transient-detection routine as well as a full-source optimal-photometry module. BlackGEM has been installed at the ESO La Silla observatory as of 2019 October. After a prolonged COVID-19 hiatus, science operations started on 2023 April 1 and will run for five years. Aside from its core scientific program, BlackGEM will give rise to a multitude of additional science cases in multi-colour time-domain astronomy, to the benefit of a variety of topics in astrophysics, such as infant supernovae, luminous red novae, asteroseismology of post-main-sequence objects, (ultracompact) binary stars, and the relation between gravitational wave counterparts and other classes of transients.more » « less
-
Abstract The North American Nanohertz Observatory for Gravitational Waves (NANOGrav) has reported evidence for the presence of an isotropic nanohertz gravitational-wave background (GWB) in its 15 yr data set. However, if the GWB is produced by a population of inspiraling supermassive black hole binary (SMBHB) systems, then the background is predicted to be anisotropic, depending on the distribution of these systems in the local Universe and the statistical properties of the SMBHB population. In this work, we search for anisotropy in the GWB using multiple methods and bases to describe the distribution of the GWB power on the sky. We do not find significant evidence of anisotropy. By modeling the angular power distribution as a sum over spherical harmonics (where the coefficients are not bound to always generate positive power everywhere), we find that the Bayesian 95% upper limit on the level of dipole anisotropy is (Cl=1/Cl=0) < 27%. This is similar to the upper limit derived under the constraint of positive power everywhere, indicating that the dipole may be close to the data-informed regime. By contrast, the constraints on anisotropy at higher spherical-harmonic multipoles are strongly prior dominated. We also derive conservative estimates on the anisotropy expected from a random distribution of SMBHB systems using astrophysical simulations conditioned on the isotropic GWB inferred in the 15 yr data set and show that this data set has sufficient sensitivity to probe a large fraction of the predicted level of anisotropy. We end by highlighting the opportunities and challenges in searching for anisotropy in pulsar timing array data.more » « less
-
Abstract Pulsar timing array collaborations, such as the North American Nanohertz Observatory for Gravitational Waves (NANOGrav), are seeking to detect nanohertz gravitational waves emitted by supermassive black hole binaries formed in the aftermath of galaxy mergers. We have searched for continuous waves from individual circular supermassive black hole binaries using NANOGrav’s recent 12.5 yr data set. We created new methods to accurately model the uncertainties on pulsar distances in our analysis, and we implemented new techniques to account for a common red-noise process in pulsar timing array data sets while searching for deterministic gravitational wave signals, including continuous waves. As we found no evidence for continuous waves in our data, we placed 95% upper limits on the strain amplitude of continuous waves emitted by these sources. At our most sensitive frequency of 7.65 nHz, we placed a sky-averaged limit ofh0< (6.82 ± 0.35) × 10−15, andh0< (2.66 ± 0.15) × 10−15in our most sensitive sky location. Finally, we placed a multimessenger limit of on the chirp mass of the supermassive black hole binary candidate 3C 66B.more » « less
-
Abstract Supermassive primordial stars with masses exceeding ∼105M⊙that form in atomically cooled halos are the leading candidates for the origin of high-redshift quasars atz> 6. Recent numerical simulations, however, find that multiple accretion disks can form within a halo, each of which can potentially host a supermassive star. We investigate the formation and evolution of secondary supermassive stars in atomically cooled halos, including strong variations in their accretion histories driven by gravitational interactions between their disks and those surrounding the primary supermassive stars in each halo. We find that all secondary disks produce long-lived supermassive stars under sustained rapid accretion. We also find, however, that the majority of secondary supermassive stars do undergo at least one protracted quiescent accretion phase, during which time they thermally relax and may become powerful sources of ionizing feedback. In many halos, the two satellite disks collide, suggesting that the two stars can come into close proximity. This may induce additional mass exchange between them, leading to a great diversity of possible outcomes. These range from coevolution as main-sequence stars to main sequence—black hole pairs and black hole—black hole mergers. We discuss the likely outcome for these binary interactions based on the evolutionary state of both supermassive stars at the end of our simulations, as well as prospects for their future detection by current and next-generation facilities.more » « less
An official website of the United States government
