The nanohertz gravitational wave background (GWB) is believed to be dominated by GW emission from supermassive black hole binaries (SMBHBs). Observations of several dual-active galactic nuclei (AGN) strongly suggest a link between AGN and SMBHBs, given that these dual-AGN systems will eventually form bound binary pairs. Here we develop an exploratory SMBHB population model based on empirically constrained quasar populations, allowing us to decompose the GWB amplitude into an underlying distribution of SMBH masses, SMBHB number density, and volume enclosing the GWB. Our approach also allows us to self-consistently predict the number of local SMBHB systems from the GWB amplitude. Interestingly, we find the local number density of SMBHBs implied by the common-process signal in the NANOGrav 12.5-yr data set to be roughly five times larger than previously predicted by other models. We also find that at most ∼25% of SMBHBs can be associated with quasars. Furthermore, our quasar-based approach predicts ≳95% of the GWB signal comes from
The North American Nanohertz Observatory for Gravitational Waves (NANOGrav) has reported evidence for the presence of an isotropic nanohertz gravitational-wave background (GWB) in its 15 yr data set. However, if the GWB is produced by a population of inspiraling supermassive black hole binary (SMBHB) systems, then the background is predicted to be anisotropic, depending on the distribution of these systems in the local Universe and the statistical properties of the SMBHB population. In this work, we search for anisotropy in the GWB using multiple methods and bases to describe the distribution of the GWB power on the sky. We do not find significant evidence of anisotropy. By modeling the angular power distribution as a sum over spherical harmonics (where the coefficients are not bound to always generate positive power everywhere), we find that the Bayesian 95% upper limit on the level of dipole anisotropy is (
- PAR ID:
- 10475189
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- AAS IOP
- Date Published:
- Journal Name:
- The Astrophysical Journal Letters
- Volume:
- 956
- Issue:
- 1
- ISSN:
- 2041-8205
- Page Range / eLocation ID:
- L3
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract z ≲ 2.5, and that SMBHBs contributing to the GWB have masses ≳108M ⊙. We also explore how different empirical galaxy–black hole scaling relations affect the local number density of GW sources, and find that relations predicting more massive black holes decrease the local number density of SMBHBs. Overall, our results point to the important role that a measurement of the GWB will play in directly constraining the cosmic population of SMBHBs, as well as their connections to quasars and galaxy mergers. -
Abstract The cosmic merger history of supermassive black hole binaries (SMBHBs) is expected to produce a low-frequency gravitational wave background (GWB). Here we investigate how signs of the discrete nature of this GWB can manifest in pulsar timing arrays (PTAs) through excursions from, and breaks in, the expected
power law of the GWB strain spectrum. To do this, we create a semianalytic SMBHB population model, fit to North American Nanohertz Observatory for Gravitational Waves (NANOGrav’s) 15 yr GWB amplitude, and with 1000 realizations, we study the populations’ characteristic strain and residual spectra. Comparing our models to the NANOGrav 15 yr spectrum, we find two interesting excursions from the power law. The first, at 2 nHz, is below our GWB realizations with ap -value significancep = 0.05–0.06 (≈1.8σ –1.9σ ). The second, at 16 nHz, is above our GWB realizations withp = 0.04–0.15 (≈1.4σ –2.1σ ). We explore the properties of a loud SMBHB that could cause such an excursion. Our simulations also show that the expected number of SMBHBs decreases by 3 orders of magnitude, from ∼106to ∼103, between 2 and 20 nHz. This causes a break in the strain spectrum as the stochasticity of the background breaks down at , consistent with predictions pre-dating GWB measurements. The diminished GWB signal from SMBHBs at frequencies above the 26 nHz break opens a window for PTAs to detect continuous GWs from individual SMBHBs or GWs from the early Universe. -
Abstract Pulsar timing arrays (PTAs) are sensitive to low-frequency gravitational waves (GWs), which induce correlated changes in millisecond pulsars’ timing residuals. PTA collaborations around the world have recently announced evidence of a nanohertz gravitational wave background (GWB), which may be produced by a population of supermassive black hole binaries (SMBHBs). The GWB is often modeled as following a power-law power spectral density (PSD); however, a GWB produced by a cosmological population of SMBHBs is expected to have a more complex power spectrum due to the discrete nature of the sources. In this paper, we investigate using a
t -process PSD to model the GWB, which allows us to fit for both the underlying power-law amplitude and spectral index as well as deviations from that power law, which may be produced by individual nearby binaries. We create simulated data sets based on the properties of the NANOGrav 15 yr data set, and we demonstrate that thet -process PSD can accurately recover the PSD when deviations from a power law are present. With longer timed data sets and more pulsars, we expect the sensitivity of our PTAs to improve, which will allow us to precisely measure the PSD of the GWB and study the sources producing it. -
Abstract Statistical anisotropy in the nanohertz-frequency gravitational wave background (GWB) is expected to be detected by pulsar timing arrays (PTAs) in the near future. By developing a frequentist statistical framework that intrinsically restricts the GWB power to be positive, we establish scaling relations for multipole-dependent anisotropy decision thresholds that are a function of the noise properties, timing baselines, and cadences of the pulsars in a PTA. We verify that (i) a larger number of pulsars, and (ii) factors that lead to lower uncertainty on spatial cross-correlation measurements between pulsars, lead to a higher overall GWB signal-to-noise ratio, and lower anisotropy decision thresholds with which to reject the null hypothesis of isotropy. Using conservative simulations of realistic NANOGrav data sets, we predict that an anisotropic GWB with angular power C l =1 > 0.3 C l =0 may be sufficient to produce tension with isotropy at the p = 3 × 10 −3 (∼3 σ ) level in near-future NANOGrav data with a 20 yr baseline. We present ready-to-use scaling relationships that can map these thresholds to any number of pulsars, configuration of pulsar noise properties, or sky coverage. We discuss how PTAs can improve the detection prospects for anisotropy, as well as how our methods can be adapted for more versatile searches.more » « less
-
Abstract Pulsar timing array collaborations, such as the North American Nanohertz Observatory for Gravitational Waves (NANOGrav), are seeking to detect nanohertz gravitational waves emitted by supermassive black hole binaries formed in the aftermath of galaxy mergers. We have searched for continuous waves from individual circular supermassive black hole binaries using NANOGrav’s recent 12.5 yr data set. We created new methods to accurately model the uncertainties on pulsar distances in our analysis, and we implemented new techniques to account for a common red-noise process in pulsar timing array data sets while searching for deterministic gravitational wave signals, including continuous waves. As we found no evidence for continuous waves in our data, we placed 95% upper limits on the strain amplitude of continuous waves emitted by these sources. At our most sensitive frequency of 7.65 nHz, we placed a sky-averaged limit of
h 0< (6.82 ± 0.35) × 10−15, andh 0< (2.66 ± 0.15) × 10−15in our most sensitive sky location. Finally, we placed a multimessenger limit of on the chirp mass of the supermassive black hole binary candidate 3C 66B.