skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Am I smart enough to be an engineer? How undergraduate engineering students articulate their identities
Abstract BackgroundStudents' identification with engineering is intertwined culturally with being smart. Broadly, engineering students are often considered to be smart by others and by themselves, and these beliefs about smartness—what it is and who has enough of it to be an engineer—are a fundamental and limiting aspect of students' experiences. PurposeThe purpose of this study was to explore how undergraduate engineering students describe themselves as smart enough to be engineers. We aimed to develop rich descriptions of the complex ways they articulate their identities as smart before coming to college and during the first two years of their undergraduate degrees. Design/MethodWe collected data through a series of interviews with 25 participants. We iteratively and collaboratively analyzed the data to determine the predominant ways the participants articulated their identities as smart enough to be engineers. We generated a qualitative data display to check for patterns related to pathways into engineering programs and privileged social identities. ResultsWe found that engineering students have three different ways to articulate that they are smart enough to be engineers: (1) they have innate abilities, (2) they are hardworking and dedicated to learning, and (3) they have skills and experience related to engineering. Additionally, we provide qualitative evidence that the innate abilities articulation relates to privilege. Discussion/ConclusionThe study participants engaged in identity work that produced the three articulations. As engineering educators, we need to take responsibility for the ways in which our participation in the cultural practice of smartness reproduces inequity.  more » « less
Award ID(s):
1920421
PAR ID:
10588259
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Engineering Education
Volume:
114
Issue:
3
ISSN:
1069-4730
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. What does it mean to be “smart” in an engineering classroom? How do engineering students make sense of themselves a s smart enough to be engineers? The development of shared beliefs about what it means to be “smart” and where you rank compared to others is a result of smartness as a cultural practice. With the cultural practice framing, smartness i s not a noun – something that someone possesses a certain amount of, but rather it is a verb – something that is actively happening to and with others in context. The interactions between individuals result in shared beliefs about what it means to be smart. Specifically, when we participate in smartness as a cultural practice, we learn what is recognized as smart and our place in the relative hierarchy of smartness. 
    more » « less
  2. Common discourse conveys that to be an engineer, one must be “smart.” Our individual and collective beliefs about what constitutes smart behavior are shaped by our participation in the complex cultural practice of smartness. From the literature, we know that the criteria for being considered “smart” in our educational systems are biased. The emphasis on selecting and retaining only those who are deemed “smart enough” to be engineers perpetuates inequity in undergraduate engineering education. Less is known about what undergraduate students explicitly believe are the different ways of being smart in engineering or how those different ways of being a smart engineer are valued in introductory engineering classrooms. In this study, we explored the common beliefs of undergraduate engineering students regarding what it means to be smart in engineering. We also explored how the students personally valued those ways of being smart versus what they perceived as being valued in introductory engineering classrooms. Through our multi-phase, multi-method approach, we initially qualitatively characterized their beliefs into 11 different ways to be smart in engineering, based on a sample of 36 engineering students enrolled in first-year engineering courses. We then employed quantitative methods to uncover significant differences, with a 95% confidence interval, in six of the 11 ways of being smart between the values personally held by engineering students and what they perceived to be valued in their classrooms. Additionally, we qualitatively found that 1) students described grades as central to their classroom experience, 2) students described the classroom as a context where effortless achievement is associated with being smart, and 3) students described a lack of reward in the classroom for showing initiative and for considerations of social impact or helping others. As engineering educators strive to be more inclusive, it is essential to have a clear understanding and reflect on how students value different ways of being smart in engineering as well as consider how these values are embedded into teaching praxis. 
    more » « less
  3. Abstract BackgroundAlthough prior research has provided robust descriptions of engineering students' identity development, a gap in the literature exists related to students' emotional experiences of shame, which undergird the socially constructed expectations of their professional formation. PurposeWe examined the lived experiences of professional shame among White male engineering students in the United States. We conceptualize professional shame to be a painful emotional state that occurs when one perceives they have failed to meet socially constructed expectations or standards that are relevant to their identity in a professional domain. MethodWe conducted unstructured interviews with nine White male engineering students from both a research‐focused institution and a teaching‐focused institution. We used interpretative phenomenological analysis to examine the interview transcripts. ResultsThe findings demonstrated four themes related to how participants experienced professional shame. First, they negotiated their global, or holistic, identities in the engineering domain. Second, they experienced threats to their identities within professional contexts. Third, participants responded to threats in ways that gave prominence to the standards they perceived themselves to have failed. Finally, they repaired their identities through reframing shame experiences and seeking social connection. ConclusionsThe findings demonstrate that the professional shame phenomenon is interwoven with professional identity development. In experiencing professional shame, White male students might reproduce the shame experience for themselves and others. This finding has important implications for the standards against which members from underrepresented groups may compare themselves and provides insight into the social construction of engineering cultures by dominant groups. 
    more » « less
  4. Contribution: This study examined the role of the engineering and smartness identities of three women as they made decisions about their participation in engineering majors. In addressing the under-representation of women in engineering, particularly in electrical engineering and computer science fields where they have been extremely under-represented, it is important to consider engineering identity as it has been shown to be an important component of major selection and persistence. Background: Smartness is inextricably linked to engineering and prior work has shown that identifying as smart is salient to students who choose engineering majors. However, the relative roles of students’ engineering and smartness identities as they relate to academic decision making and persistence in engineering is not well understood. Research Question: How do engineering identity and smartness identity relate to women’s decisions about choosing engineering majors in the instances of joining engineering, changing engineering major, and leaving engineering? Methodology: Data were collected from a series of three interviews with three different women. Data condensation techniques, including writing participant summary memos and analytic memos, focused on detailing participants’ academic decisions, engineering identity, and smartness identity were used for analysis. Data visualization was used to map the women’s engineering identity and smartness identity to their academic decisions related to their majors. Findings: The findings indicate the participants’ smartness identity was salient in the initial decision to matriculate into engineering, both their engineering and smartness identities remained stable as they persisted in or left engineering. And reveal complex interactions between these identities and decision making. 
    more » « less
  5. null (Ed.)
    Despite decades of research, the underrepresentation of non-male, and non-white individuals in engineering continues to be a critical problem. A widespread and commonly accepted approach to recruit and retain diverse individuals is to provide multiple pathways into engineering degree programs, such as offering introductory courses at community colleges or regional campuses. Although these pathways are intended to promote diversity, they are similar in structure to the educational tracking practices common within the K-12 context that extant research has shown often work to perpetuate social inequalities. Students in less prestigious tracks have lower educational aspirations and less favorable self-beliefs. As such, the objective of this research is to understand undergraduate engineering students’ beliefs and identities with respect to smartness and engineering from different institutionalized educational pathways. In our executive summary and poster, we report on the pilot phase of the project consisting of nine semi-structured one-on-one interviews with first-year engineering students across three different institutionalized educational pathways as well as the development and refinement of the interview protocol. The pilot interview protocol was initially development to access the main constructs of interest for this research, beliefs about engineering and smartness as well as identity with respect to engineering and smartness. After the pilot interviews were completed, we utilized an interview protocol refinement approach and determined that the most insufficient portion of our initial protocol was the portion designed to have participants relate their engineering identity to their identity as smart (or not). As such, follow up questions were added to the protocol to provide clarity. The refined interview protocol will be used during the next phase of the study. The full study will include interviews with 30 participants across six different pathways to understand how participation in different institutionalized pathways relates to students’ experiences, beliefs, and identities. These participants will be interviewed up to three times to follow their development as they transition beyond introductory engineering courses regardless of if they continue with the engineering or not. Our work will provide valuable insights into the complex beliefs and identities about engineering and smartness of students participating in different institutionalized pathways into engineering. Ultimately, we believe our findings will inform the ways in which this common structural approach to broadening participation is enacted in engineering. 
    more » « less