skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 7, 2026

Title: Embryonic heat conditioning induces paternal heredity of immunological cross- tolerance: coordinative role of CpG DNA methylation and miR-200a regulation
BackgroundEnhancing an organism’s survival hinges on the development of balanced and adaptable stress response systems. While the initial stress-response set-points in the hypothalamus may be genetically determined, they are further influenced by epigenetic factors during embryonic development. A debate persists regarding the heritability of such behavioral traits. The chickin ovoheat conditioning model offers a unique insight into this fundamental question, where manipulation during embryonic development can induce heat resilience and even cross-tolerance to promote immunological resilience. In this study, we conducted an analysis of thermal manipulation during embryogenesis to demonstrate paternal heredity and investigate its transmission through sperm DNA methylation in coordination with miR-200a action. ResultFirst-generation embryos underwentin ovoheat conditioning (EHC), creating a cohort of embryonic EHC and control chicks. These chicks were then subjected to an intracranial lipopolysaccharide (LPS) challenge. Conditioning rendered the chicks immune resilient, as evidenced by their fibril effect. Male offspring were raised to maturity, and their sperm was analyzed for methylome patterns, revealing significant differences between treatments, particularly in immune and development related genes. Additionally, sperm from EHC males was used for artificial insemination of naïve Cobb hens, resulting in untreated offspring that displayed immune resilience upon LPS challenge, indicating transgenerational effects. Overlap analysis of sperm methylome and differentially methylated sites (DMS) of offspring hypothalamus revealed inheritance of altered methylation associated with specific genes. Several of these genes are potential effectors of miR-200a, whose expression profile in the hypothalamus during LPS challenge was conserved across both generations. To evaluate the role of miR-200a in cross-tolerance acquisition, miR-200a was intracranially injected, and RNA-seq analysis of the hypothalamus revealed genes involved in the regulation of developmental and metabolic processes, stress, and immune response. ConclusionThis study demonstrates paternal trait heredity by revealing that EHC induces cross-tolerance with the immunological system, rendering chicks resilient to LPS that transgenerationally transmit this to untreated offspring. Additionally, analysis of sperm methylation patterns in EHC mature chicks led to identification of genes associated with neuronal development and immune response, indicating potential neural network reorganization. Finally, miR-200a emerges as a regulator potentially involved in mediating the cross-tolerance effect.  more » « less
Award ID(s):
2041923
PAR ID:
10588328
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Frontiers in Immunology
Date Published:
Journal Name:
Frontiers in Immunology
Volume:
16
ISSN:
1664-3224
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. IntroductionExposure to elevated temperatures during incubation is known to induce epigenetic changes that are associated with immunological and stress-response differences at a later age. Reports on its effects on the adipose tissue are still scarce. In this experiment, we investigated the effect of embryonic heat conditioning (EHC) on growth, adipose tissue mRNA and global DNA methylation in broiler chicks at day 4 post-hatch. MethodsFertile eggs were divided into two groups: control and EHC. Eggs in the control group were incubated at 37.8°C and 80% relative humidity from day 0 to day 18.5 (E0 to E18.5). The EHC eggs were subjected to an intermittent increase in temperature to 39.5°C and 80% relative humidity from E7 to E16 for 12 h (07:30–19:30) per day. On day 4 post-hatch, control and EHC chicks were subjected to 36°C using three time points: 0 (no heat challenge serving as the control), and 2 and 12 h relative to start of the heat challenge. Fifteen chicks were sampled from each group for every timepoint. Body weight was recorded before euthanasia and subcutaneous adipose tissue was collected. ResultsBody weights were similar in control and EHC groups. Diacylglycerol O-acyltransferase 2 (DGAT2) mRNA was lower in the EHC group at time 0 relative to control. Hormone-sensitive lipase (HSL) mRNA was greater in the EHC than control group at the 0 h timepoint. Heat challenge affected adipose tissue DNA methylation, with methylation highest at 12 h into the heat challenge. DiscussionThese findings highlight the dynamic molecular responses of chicks to heat stress during early post-hatch development and suggest that EHC may affect heat stress responses and adipose tissue development through mechanisms involving lipid remodeling and DNA methylation. 
    more » « less
  2. Marine heatwave (MHW) events, characterized by periods of anomalous temperatures, are an increasingly prevalent threat to coastal marine ecosystems. Given the seasonal phenology of MHWs, the full extent of their biological consequences may depend on how these thermal stress events align with an organism’s reproductive cycle. In organisms with more complex life cycles (e.g., many marine invertebrate species) the alignment of adult and larval environments may be an important factor determining offspring success, setting the stage for MHW events to influence reproduction and development in situ . Here, the influence of MHW-like temperatures on the early development of the California purple sea urchin, Strongylocentrotus purpuratus , were explored within the context of paternal thermal history. Based on temperature data collected during MHW events seen in Southern California from 2014–2020, adult urchins were acclimated to either MHW or non-MHW temperatures for 28 days before their sperm was used to produce embryos that were subsequently raised under varying thermal conditions. Once offspring reached an early larval stage, the impact of paternal and offspring environments were assessed on two aspects of offspring performance: larval size and thermal tolerance. Exposure to elevated temperatures during early development resulted in larger, more thermally tolerant larvae, with further influences of paternal identity and thermal history, respectively. The alignment of paternal and offspring exposure to MHW temperatures had additional positive benefits on larval thermal tolerance, but this tolerance significantly decreased when their thermal experience mismatched. As the highest recorded temperatures within past MHW events have occurred during the gametogenesis of many kelp forest benthic marine invertebrate species, such as the purple sea urchin, such parental mediated impacts may represent important drivers of future recruitment and population composition for these species. 
    more » « less
  3. Abstract BackgroundEnvironmental fluctuation during embryonic and fetal development can permanently alter an organism’s morphology, physiology, and behaviour. This phenomenon, known as developmental plasticity, is particularly relevant to reptiles that develop in subterranean nests with variable oxygen tensions. Previous work has shown hypoxia permanently alters the cardiovascular system of snapping turtles and may improve cardiac anoxia tolerance later in life. The mechanisms driving this process are unknown but may involve epigenetic regulation of gene expression via DNA methylation. To test this hypothesis, we assessed in situ cardiac performance during 2 h of acute anoxia in juvenile turtles previously exposed to normoxia (21% oxygen) or hypoxia (10% oxygen) during embryogenesis. Next, we analysed DNA methylation and gene expression patterns in turtles from the same cohorts using whole genome bisulfite sequencing, which represents the first high-resolution investigation of DNA methylation patterns in any reptilian species. ResultsGenome-wide correlations between CpG and CpG island methylation and gene expression patterns in the snapping turtle were consistent with patterns observed in mammals. As hypothesized, developmental hypoxia increased juvenile turtle cardiac anoxia tolerance and programmed DNA methylation and gene expression patterns. Programmed differences in expression of genes such asSCN5Amay account for differences in heart rate, while genes such asTNNT2andTPM3may underlie differences in calcium sensitivity and contractility of cardiomyocytes and cardiac inotropy. Finally, we identified putative transcription factor-binding sites in promoters and in differentially methylated CpG islands that suggest a model linking programming of DNA methylation during embryogenesis to differential gene expression and cardiovascular physiology later in life. Binding sites for hypoxia inducible factors (HIF1A, ARNT, and EPAS1) and key transcription factors activated by MAPK and BMP signaling (RREB1 and SMAD4) are implicated. ConclusionsOur data strongly suggests that DNA methylation plays a conserved role in the regulation of gene expression in reptiles. We also show that embryonic hypoxia programs DNA methylation and gene expression patterns and that these changes are associated with enhanced cardiac anoxia tolerance later in life. Programming of cardiac anoxia tolerance has major ecological implications for snapping turtles, because these animals regularly exploit anoxic environments throughout their lifespan. 
    more » « less
  4. Optimization of growth performance and fat metabolism in broilers are critical for meat quality and overall production efficiency. This experiment investigated the effects of dietary baicalein supplementation and embryonic heat conditioning (EHC) on the growth performance and adipose tissue metabolism of 10-day old broilers. Fertile eggs were divided into control and EHC groups, with EHC eggs exposed to intermittent heating (39.5 °C) from day 7 to day 16 of incubation. Hatched chicks were further divided into four groups: CC (control control), CT (control treatment with baicalein), EC (embryonic heat control), and ET (embryonic heat treatment with baicalein), and were fed ad libitum. On day 10 post-hatch, blood and adipose tissue samples were collected for analysis. C/EBPα mRNA was lower in the ET group compared to the EC group and higher in the CT group compared to the CC group. PPARγ and HSL mRNAs were elevated in both the ET and CT groups relative to their controls. Additionally, plasma non-esterified fatty acid (NEFA) levels were significantly higher in the CT group compared to the CC group. These results indicate that baicalein supplementation, particularly when combined with embryonic heat conditioning, can modulate fat metabolism and potentially improve the growth performance of broilers, thereby offering insights into strategies for enhancing poultry production. 
    more » « less
  5. Abstract Conflict between genes inherited from the mother (matrigenes) and the father (patrigenes) is predicted to arise during social interactions among offspring if these genes are not evenly distributed among offspring genotypes. This intragenomic conflict drives parent-specific transcription patterns in offspring resulting from parent-specific epigenetic modifications. Previous tests of the kinship theory of intragenomic conflict in honey bees (Apis mellifera) provided evidence in support of theoretical predictions for variation in worker reproduction, which is associated with extreme variation in morphology and behavior. However, more subtle behaviors – such as aggression – have not been extensively studied. Additionally, the canonical epigenetic mark (DNA methylation) associated with parent-specific transcription in plant and mammalian model species does not appear to play the same role as in honey bees, and thus the molecular mechanisms underlying intragenomic conflict in this species is an open area of investigation. Here, we examined the role of intragenomic conflict in shaping aggression in honey bee workers through a reciprocal cross design and Oxford Nanopore direct RNA sequencing. We attempted to probe the underlying regulatory basis of this conflict through analyses of parent-specific RNA m6A and alternative splicing patterns. We report evidence that intragenomic conflict occurs in the context of honey bee aggression, with increased paternal and maternal allele-biased transcription in aggressive compared to non-aggressive bees, and higher paternal allele-biased transcription overall. However, we found no evidence to suggest that RNA m6A or alternative splicing mediate intragenomic conflict in this species. 
    more » « less