Abstract We study solar wind turbulence anisotropy in the inertial and energy-containing ranges in the inbound and outbound directions during encounters 1–9 by the Parker Solar Probe (PSP) for distances between ∼21 and 65R⊙. Using the Adhikari et al. approach, we derive theoretical equations to calculate the ratio between the 2D and slab fluctuating magnetic energy, fluctuating kinetic energy, and the outward/inward Elsässer energy in the inertial range. For this, in the energy-containing range, we assume a wavenumberk−1power law. In the inertial range, for the magnetic field fluctuations and the outward/inward Elsässer energy, we consider that (i) both 2D and slab fluctuations follow a power law ofk−5/3, and (ii) the 2D and slab fluctuations follow the power laws withk−5/3andk−3/2, respectively. For the velocity fluctuations, we assume that both the 2D and slab components follow ak−3/2power law. We compare the theoretical results of the variance anisotropy in the inertial range with the derived observational values measured by PSP, and find that the energy density of 2D fluctuations is larger than that of the slab fluctuations. The theoretical variance anisotropy in the inertial range relating to thek−5/3andk−3/2power laws between 2D and slab turbulence exhibits a smaller value in comparison to assuming the same power lawk−5/3between 2D and slab turbulence. Finally, the observed turbulence energy measured by PSP in the energy-containing range is found to be similar to the theoretical result of a nearly incompressible/slab turbulence description.
more »
« less
Anisotropy of Density Fluctuations in the Solar Wind at 1 au
Abstract A well-known property of solar wind plasma turbulence is the observed anisotropy of the autocorrelations, or equivalently the spectra, of velocity and magnetic field fluctuations. Here we explore the related but apparently not well-studied issue of the anisotropy of plasma density fluctuations in the energy-containing and inertial ranges of solar wind turbulence. Using 10 yr (1998–2008) of in situ data from the Advanced Composition Explorer mission, we find that for all but the fastest wind category, the density correlation scale is slightly larger in directions quasi-parallel to the large-scale mean magnetic field as compared to quasi-perpendicular directions. The correlation scale in fast wind is consistent with isotropic. The anisotropy as a function of the level of correlation is also explored. We find at small correlation levels, i.e., at energy-containing scales and larger, the density fluctuations are close to isotropy for fast wind, and slightly favor more rapid decorrelation in perpendicular directions for slow and medium winds. At relatively smaller (inertial range) scales where the correlation values are larger, the sense of anisotropy is reversed in all speed ranges, implying a more “slablike” structure, especially prominent in the fast wind samples. We contrast this finding with published results on velocity and magnetic field correlations.
more »
« less
- Award ID(s):
- 2108834
- PAR ID:
- 10588460
- Publisher / Repository:
- The Astrophysical Journal
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 967
- Issue:
- 2
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 150
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
At kinetic scales in the solar wind, instabilities transfer energy from particles to fluctuations in the electromagnetic fields while restoring plasma conditions towards thermodynamic equilibrium. We investigate the interplay between background turbulent fluctuations at the small-scale end of the inertial range and kinetic instabilities acting to reduce proton temperature anisotropy. We analyse in situ solar wind observations from the Solar Orbiter mission to develop a measure for variability in the magnetic field direction. We find that non-equilibrium conditions sufficient to cause micro-instabilities in the plasma coincide with elevated levels of variability. We show that our measure for the fluctuations in the magnetic field is non-ergodic in regions unstable to the growth of temperature anisotropy-driven instabilities. We conclude that the competition between the action of the turbulence and the instabilities plays a significant role in the regulation of the proton-scale energetics of the solar wind. This competition depends not only on the variability of the magnetic field but also on the spatial persistence of the plasma in non-equilibrium conditions.more » « less
-
We investigate the validity of Taylor’s hypothesis (TH) in the analysis of velocity and magnetic field fluctuations in Alfvénic solar wind streams measured by Parker Solar Probe (PSP) during the first four encounters. The analysis is based on a recent model of the spacetime correlation of magnetohydrodynamic (MHD) turbulence, which has been validated in high-resolution numerical simulations of strong reduced MHD turbulence. We use PSP velocity and magnetic field measurements from 24 h intervals selected from each of the first four encounters. The applicability of TH is investigated by measuring the parameter ϵ = δu 0 /√2 V ⊥ , which quantifies the ratio between the typical speed of large-scale fluctuations, δu 0 , and the local perpendicular PSP speed in the solar wind frame, V ⊥ . TH is expected to be applicable for ϵ ≲ 0.5 when PSP is moving nearly perpendicular to the local magnetic field in the plasma frame, irrespective of the Alfvén Mach number M A = V SW ∕ V A , where V SW and V A are the local solar wind and Alfvén speed, respectively. For the four selected solar wind intervals, we find that between 10 and 60% of the time, the parameter ϵ is below 0.2 and the sampling angle (between the spacecraft velocity in the plasma frame and the local magnetic field) is greater than 30°. For angles above 30°, the sampling direction is sufficiently oblique to allow one to reconstruct the reduced energy spectrum E ( k ⊥ ) of magnetic fluctuations from its measured frequency spectra. The spectral indices determined from power-law fits of the measured frequency spectrum accurately represent the spectral indices associated with the underlying spatial spectrum of turbulent fluctuations in the plasma frame. Aside from a frequency broadening due to large-scale sweeping that requires careful consideration, the spatial spectrum can be recovered to obtain the distribution of fluctuation’s energy across scales in the plasma frame.more » « less
-
Abstract The Parker Solar Probe (PSP) routinely observes magnetic field deflections in the solar wind at distances less than 0.3 au from the Sun. These deflections are related to structures commonly called “switchbacks” (SBs), whose origins and characteristic properties are currently debated. Here, we use a database of visually selected SB intervals—and regions of solar wind plasma measured just before and after each SB—to examine plasma parameters, turbulent spectra from inertial to dissipation scales, and intermittency effects in these intervals. We find that many features, such as perpendicular stochastic heating rates and turbulence spectral slopes are fairly similar inside and outside of SBs. However, important kinetic properties, such as the characteristic break scale between the inertial to dissipation ranges differ inside and outside these intervals, as does the level of intermittency, which is notably enhanced inside SBs and in their close proximity, most likely due to magnetic field and velocity shears observed at the edges. We conclude that the plasma inside and outside of an SB, in most of the observed cases, belongs to the same stream, and that the evolution of these structures is most likely regulated by kinetic processes, which dominate small-scale structures at the SB edges.more » « less
-
Abstract Using high-resolution data from Solar Orbiter, we investigate the plasma conditions necessary for the proton temperature-anisotropy-driven mirror-mode and oblique firehose instabilities to occur in the solar wind. We find that the unstable plasma exhibits dependencies on the angle between the direction of the magnetic field and the bulk solar wind velocity which cannot be explained by the double-adiabatic expansion of the solar wind alone. The angle dependencies suggest that perpendicular heating in Alfvénic wind may be responsible. We quantify the occurrence rate of the two instabilities as a function of the length of unstable intervals as they are convected over the spacecraft. This analysis indicates that mirror-mode and oblique firehose instabilities require a spatial interval of length greater than 2–3 unstable wavelengths in order to relax the plasma into a marginally stable state and thus closer to thermodynamic equilibrium in the solar wind. Our analysis suggests that the conditions for these instabilities to act effectively vary locally on scales much shorter than the correlation length of solar wind turbulence.more » « less