skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Temporal scaling theory for bursty time series with clusters of arbitrarily many events
Long-term temporal correlations in time series in a form of an event sequence have been characterized using an autocorrelation function that often shows a power-law decaying behavior. Such scaling behavior has been mainly accounted for by the heavy-tailed distribution of interevent times, i.e., the time interval between two consecutive events. Yet, little is known about how correlations between consecutive interevent times systematically affect the decaying behavior of the autocorrelation function. Empirical distributions of the burst size, which is the number of events in a cluster of events occurring in a short time window, often show heavy tails, implying that arbitrarily many consecutive interevent times may be correlated with each other. In the present study, we propose a model for generating a time series with arbitrary functional forms of interevent time and burst size distributions. Then, we analytically derive the autocorrelation function for the model time series. In particular, by assuming that the interevent time and burst size are power-law distributed, we derive scaling relations between power-law exponents of the autocorrelation function decay, interevent time distribution, and burst size distribution. These analytical results are confirmed by numerical simulations. Our approach helps to rigorously and analytically understand the effects of correlations between arbitrarily many consecutive interevent times on the decaying behavior of the autocorrelation function.  more » « less
Award ID(s):
2052720
PAR ID:
10588484
Author(s) / Creator(s):
; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
Chaos: An Interdisciplinary Journal of Nonlinear Science
Volume:
34
Issue:
8
ISSN:
1054-1500
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Pillai & Meng (Pillai & Meng 2016 Ann. Stat. 44 , 2089–2097; p. 2091) speculated that ‘the dependence among [random variables, rvs] can be overwhelmed by the heaviness of their marginal tails ·· ·’. We give examples of statistical models that support this speculation. While under natural conditions the sample correlation of regularly varying (RV) rvs converges to a generally random limit, this limit is zero when the rvs are the reciprocals of powers greater than one of arbitrarily (but imperfectly) positively or negatively correlated normals. Surprisingly, the sample correlation of these RV rvs multiplied by the sample size has a limiting distribution on the negative half-line. We show that the asymptotic scaling of Taylor’s Law (a power-law variance function) for RV rvs is, up to a constant, the same for independent and identically distributed observations as for reciprocals of powers greater than one of arbitrarily (but imperfectly) positively correlated normals, whether those powers are the same or different. The correlations and heterogeneity do not affect the asymptotic scaling. We analyse the sample kurtosis of heavy-tailed data similarly. We show that the least-squares estimator of the slope in a linear model with heavy-tailed predictor and noise unexpectedly converges much faster than when they have finite variances. 
    more » « less
  2. We use North American Electric Reliability Corporation historical data to give improved estimates of distributions of blackout size, time correlations, and waiting times for the Eastern and Western interconnections of the North American grid. We then explain and estimate the implications of the power law region (heavy tails) in the empirical distribution of blackout size in the historical data for the Western interconnection. Annual mean blackout size has high variability and the risk of large blackouts exceeds the risk of medium size blackouts. Ways to communicate blackout risk are discussed. 
    more » « less
  3. null (Ed.)
    Abstract Single-molecule tracking (SMT) allows the study of transcription factor (TF) dynamics in the nucleus, giving important information regarding the diffusion and binding behavior of these proteins in the nuclear environment. Dwell time distributions obtained by SMT for most TFs appear to follow bi-exponential behavior. This has been ascribed to two discrete populations of TFs—one non-specifically bound to chromatin and another specifically bound to target sites, as implied by decades of biochemical studies. However, emerging studies suggest alternate models for dwell-time distributions, indicating the existence of more than two populations of TFs (multi-exponential distribution), or even the absence of discrete states altogether (power-law distribution). Here, we present an analytical pipeline to evaluate which model best explains SMT data. We find that a broad spectrum of TFs (including glucocorticoid receptor, oestrogen receptor, FOXA1, CTCF) follow a power-law distribution of dwell-times, blurring the temporal line between non-specific and specific binding, suggesting that productive binding may involve longer binding events than previously believed. From these observations, we propose a continuum of affinities model to explain TF dynamics, that is consistent with complex interactions of TFs with multiple nuclear domains as well as binding and searching on the chromatin template. 
    more » « less
  4. We study synthetic temporal networks whose evolution is determined by stochastically evolving node variables—synthetic analogues of, e.g., temporal proximity networks of mobile agents. We quantify the long-timescale correlations of these evolving networks by an autocorrelative measure of network-structural memory. Several distinct patterns of autocorrelation arise, including power-law decay and exponential decay, depending on the choice of node-variable dynamics and connection probability function. Our methods are also applicable in wider contexts; our temporal network models are tractable mathematically and in simulation, and our long-term memory quantification is analytically tractable and straightforwardly computable from temporal network data. Published by the American Physical Society2025 
    more » « less
  5. The Cosmic Ray Extremely Distributed Observatory (CREDO) pursues a global research strategy dedicated to the search for correlated cosmic rays, so-called Cosmic Ray Ensembles (CRE). Its general approach to CRE detection does not involve any a priori considerations, and its search strategy encompasses both spatial and temporal correlations, on different scales. Here we search for time clustering of the cosmic ray events collected with a small sea-level extensive air shower array at the University of Adelaide. The array consists of seven one-square-metre scintillators enclosing an area of 10 m × 19 m. It has a threshold energy ~0.1 PeV, and records cosmic ray showers at a rate of ~6 mHz. We have examined event arrival times over a period of over 2.5 years in two equipment configurations (without and with GPS timing), recording ~300 k events and ~100 k events. We determined the event time spacing distributions between individual events and the distributions of time periods which contained specific numbers of multiple events. We find that the overall time distributions are as expected for random events. The distribution which was chosen a priori for particular study was for time periods covering five events (four spacings). Overall, these distributions fit closely with expectation, but there are two outliers of short burst periods in data for each configuration. One of these outliers contains eight events within 48 s. The physical characteristics of the array will be discussed together with the analysis procedure, including a comparison between the observed time distributions and expectation based on randomly arriving events. 
    more » « less